
www.xmlsummerschool.com

summer school

© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Getting the Most out of XSLT 2.0

Priscilla Walmsley

Datypic, Inc.

XSLT and XQuery
9 September 2010

summer school

www.xmlsummerschool.com Slide 2
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Learning Objectives

1.Understand the changes in the XPath 2.0 data
model and built-in functions that affect XSLT 2.0
stylesheets.

2.Learn about the new features of XSLT 2.0 and how
and when to use them.

3.Become aware of potential backward
incompatibilities when upgrading stylesheets from
XSLT 1.0 to 2.0.

Based on your previous experience with XSLT 1.0,
explore the new features of XSLT 2.0

summer school

www.xmlsummerschool.com Slide 3
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Contents

1. XPath 2.0 Differences

2. Grouping

3. User-Defined Functions

4. Regular Expression Capabilities

5. Inputs and Outputs

6. Types and Schemas

7. Miscellaneous Enhancements

summer school

www.xmlsummerschool.com Slide 4
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

W3C Standards for
Querying/Transformation

XQuery 1.0 XSLT 2.0XPath

2.0

XSLT 1.0

Path Expressions

Comparison Expressions

25 Built-In Functions

Conditional Expressions

Arithmetic Expressions

Quantified Expressions

100 Built-In Functions

Data Model

FLWOR Expressions

XML Constructors

Query Prolog

User-Defined Functions

Grouping

User-Defined Functions

Regex Matching

XPath

1.0

Stylesheets

Templates

etc.

www.xmlsummerschool.com

summer school

© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

XPath 2.0 Differences

summer school

www.xmlsummerschool.com Slide 6
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Data Model Differences

•Nodes

–root nodes are now "document nodes"

–namespace nodes are deprecated

•Atomic values

–more types, e.g. xs:integer, xs:date

•Sequences (formerly node-sets)

–are ordered

–can contain duplicates

–can contain atomic values as well as nodes

summer school

www.xmlsummerschool.com Slide 7
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

•Basic syntax is still the same

–Same steps, predicates, node tests

–Same axes

•except that the namespace axis is deprecated

•Key new features

–Expressions as steps

–Paths that return atomic values

–New operators that can be used in predicates

Path Expressions in XPath 2.0

summer school

www.xmlsummerschool.com Slide 8
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Expressions as Steps

•Expressions can be used as steps

–not just node tests

product/(number | name)

product/(if (desc) then desc else name)

$catDoc/catalog/product

$prods[position() > 3]

//product/dty:ordersForProd(.)/orderID

summer school

www.xmlsummerschool.com Slide 9
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Paths Returning Atomic Values

•The last step in a path can now return an atomic
value

•But only the last step

product/name/substring(.,1,9)

product/name/substring(.,1,9)/replace(.,'x','y')

sum(//item/(@price * @qty))

summer school

www.xmlsummerschool.com Slide 10
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Comparing Values of Different Types

•In XPath 2.0, the comparison operators do not just
apply to numbers.

•All of the following return true:

99 < 100

'a' < 'aaa'

'aaa' < 'bbb'

current-date() < xs:date("2009-06-01")

'100' < '99'
Caution! Backward
incompatibility

summer school

www.xmlsummerschool.com Slide 11
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Arithmetic Expressions: What's New?

•Arithmetic can be performed on dates and
durations as well as numbers

•Missing value returns empty sequence rather than
NaN

•New idiv operator (integer division)

current-date() + xs:duration("P1M")

product[1]/foo * 2 returns ()

14 idiv 4 returns 3

summer school

www.xmlsummerschool.com Slide 12
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

New Operators for Combining Sequences

•concatenation

–duplicates are not removed, order is retained

•union, intersect and except

–duplicates are removed

–results are sorted in document order

–work on sequences of nodes only, not atomic
values $seq1 union $seq2

$seq1 | $seq2

$seq1 intersect $seq2

$seq1 except $seq2

($seq1, $seq2)

summer school

www.xmlsummerschool.com Slide 13
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Range Expressions

•Create sequences of consecutive integers

•Use to keyword

–(1 to 5) evaluates to a sequence of 1, 2, 3, 4 and 5

•Useful to iterate a specific number of times

<xsl:for-each select="1 to 5"> ...

<xsl:for-each select="1 to $count"> ...

summer school

www.xmlsummerschool.com Slide 14
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Node Comparison Operators

•To compare nodes based on document order, use

–<< for precedes

–>> for follows

•is operator to see if two nodes are the same node

•For nodes only

–no document order on atomic values

h[1] >> p[1]

$thisEl is p[1]

summer school

www.xmlsummerschool.com Slide 15
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

•if-then-else syntax

•else is always required

–but it can be just else ()

•More compact alternative to xsl:choose

<xsl:variable name="heading"

select="if (exists(desc))

then desc

else name"/>

Conditional Formatting

summer school

www.xmlsummerschool.com Slide 16
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

For Expressions

•Simplified version of XQuery FLWOR expressions

–only one for clause, no let or where

•More compact alternative to xsl:for-each

<xsl:variable name="prodNames"

select="for $aName in //product/substring(name,1,9)

return replace($aName,'x','y')"/>

summer school

www.xmlsummerschool.com Slide 17
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

New Built-In Functions: String-Related

•Regular expression matching

–matches, replace, tokenize

•ends-with

•lower-case, upper-case

•Escaping and normalizing

–normalize-unicode, iri-to-uri, escape-html-
uri

ends-with("XPath","th") ==> true

upper-case("XPath") ==> XPATH

summer school

www.xmlsummerschool.com Slide 18
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

string-join function

•Use the string-join function instead of looping

through strings

<xsl:for-each select="//name">

<xsl:value-of select="."/>

<xsl:if test="position() != last()">, </xsl:if>

</xsl:for-each>

<xsl:value-of select="string-join(//name,', ')"/>

summer school

www.xmlsummerschool.com Slide 19
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

New Built-In Functions: Date-Related

•current date/time

– current-date, current-time, current-

dateTime

•getting date components

–e.g. month-from-date, seconds-from-time

•format-date

current-date() ==> 2008-12-09

month-from-date(xs:date('2008-12-09')) ==> 12

format-date(xs:date('2008-12-09'),

'[D1o] [MNn], [Y]', 'en', (), ())

==> 9th December, 2008

summer school

www.xmlsummerschool.com Slide 20
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

New Built-In Functions: Other

•average (avg)

•minimum and maximum (min, max)

•distinct-values

avg($prods/price) ==> 12.54

max($prods//price) ==> 499.99

min($people//firstname/string(.)) ==> "Aaron"

not just for
numbers

distinct-values($prods//@dept)

==> ("WMN","ACC","MEN")

summer school

www.xmlsummerschool.com Slide 21
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

The deep-equal Function

•deep-equal tests whether two nodes have the

same contents

<product dept='MEN' id='P123'>

<number>784</number>

</product>

<product id='P123' dept='MEN'><!--comment-->

<number>784</number>

</product>

deep-equal(product[1], product[2]) ==> true

www.xmlsummerschool.com

summer school

© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Grouping

summer school

www.xmlsummerschool.com Slide 23
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Grouping

•Difficult in XSLT 1.0; usually used keys

•xsl:for-each-group element allows you to iterate

through groups

–select attribute identifies items to group

–group-by attribute specifies the grouping key

•Two functions can be used within for-each-group:

–current-group() returns members of current

group

–current-grouping-key() returns the current

grouping key

summer school

www.xmlsummerschool.com Slide 24
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Grouping by Value

<xsl:template match="/">

<RESULTS>

<xsl:for-each-group select="catalog/product"

group-by="@dept" >

<xsl:sort select="current-grouping-key()"/>

<DEPT name="{current-grouping-key()}"

prodCount="{count(current-group())}">

</DEPT>

</xsl:for-each-group>

</RESULTS>

</xsl:template>

<RESULTS>

<DEPT name="ACC" prodCount="2"/>

<DEPT name="MEN" prodCount="1"/>

<DEPT name="WMN" prodCount="1"/>

</RESULTS>

summer school

www.xmlsummerschool.com Slide 25
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Grouping by Sequence

•Instead of group-by, you can use:

–group-adjacent

•groups adjacent items with the same key together

–group-starting-with

•creates a group of items starting with the specified
element

–group-ending-with

•creates a group of items ending with the specified
element

summer school

www.xmlsummerschool.com Slide 26
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Grouping by Sequence

<body>

<h1>Chapter 1</h1>

<p>This chapter...</p>

<h2>Section 1.1</h2>

<p>In this section...</p>

<p>More text</p>

<h2>Section 1.2</h2>

<p>In this section...</p>

</body>

<section level="1">

<section level="2">

<heading>Chapter 1</heading>

<p>This chapter...</p>

</section>

<section level="2">

<heading>Section 1.1</heading>

<p>In this section...</p>

<p>More text</p>

</section>

<section level="2">

<heading>Section 1.2</heading>

<p>In this section...</p>

</section>

</section>Input document

Output document

summer school

www.xmlsummerschool.com Slide 27
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Grouping by Sequence

<xsl:template match="/">

<xsl:for-each-group select="body/*" group-starting-with="h1">

<section level="1" >

<xsl:for-each-group select="current-group()"

group-starting-with="h2">

<section level="2">

<xsl:apply-templates select="current-group()"/>

</section>

</xsl:for-each-group>

</section>

</xsl:for-each-group>

</xsl:template>

www.xmlsummerschool.com

summer school

© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

User-Defined Functions

summer school

www.xmlsummerschool.com Slide 29
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

User-Defined Functions

•Define your own functions using xsl:function

–xsl:param child is used to define a parameter

•Similar to named templates but more useful

•Contents of xsl:function are the results returned

–might be an xsl:copy-of, an xsl:value-of, a

constructed element, etc.

•Benefits

–Reuse

–Clarity

–Recursion

summer school

www.xmlsummerschool.com Slide 30
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Function Declaration Example

<xsl:function name="my:substring-after-last"

as="xs:string">

<xsl:param name="string" as="xs:string"/>

<xsl:param name="delim" as="xs:string"/>

<xsl:value-of select="

if (contains ($string, $delim))

then my:substring-after-last(

substring-after($string, $delim), $delim)

else $string"/>

</xsl:function>

<xsl:value-of select="my:substring-after-last(

'abc,def,ghi', ',')"/> ==> 'ghi'
function call

return type

parameters

summer school

www.xmlsummerschool.com Slide 31
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Convenient Uses for Functions

•Unlike named templates, functions can be very
useful in places where only a simple XPath
expression or pattern is allowed, e.g.:

–The select or group-by attributes of xsl:for-
each-group

–The select attribute of xsl:sort

–The match attribute of xsl:template

<xsl:template match="*[my:contains-word(.,'Section')]">

www.xmlsummerschool.com

summer school

© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Regular Expression Capabilities

summer school

www.xmlsummerschool.com Slide 33
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

The matches Function

•matches

–whether a string matches a regular expression

–uses the XML Schema regex syntax (similar to
Perl)

–optional third "flags" argument allows for
interpretation of regular expression

–case sensitivity

–multi-line mode

–whitespace sensitivity

matches("query", "^qu") ==> true

summer school

www.xmlsummerschool.com Slide 34
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

The tokenize Function

•tokenize

–delimiter specified as a regular expression

–returns a sequence of strings

tokenize("a b c", "\s")

==> ("a", "b", "c")

tokenize("2006-12-25T12:15:00", "[\-T:]")

==> ("2006","12","25","12","15","00")

summer school

www.xmlsummerschool.com Slide 35
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

The replace Function

•Arguments are:

–the string to be manipulated

–the regular expression

–the replacement string

replace("query", "r", "as") queasy

replace("query", "qu", "quack") quackery

replace("query", "[ry]", "l") quell

replace("query", "[ry]+", "l") quel

replace("query 1 and query 2",

"(\d)", "[$1]")

query [1] and

query [2]

summer school

www.xmlsummerschool.com Slide 36
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

String Handling via xsl:analyze-string

•xsl:analyze-string element splits string into

matching and non-matching parts, based on a regex

–select attribute specifies the string

–regex attribute specifies regular expression

–xsl:matching-substring child specifies what to

do with matching parts

–xsl:non-matching-substring child specifies what

to do with non-matching parts

•More powerful than matches or replace

summer school

www.xmlsummerschool.com Slide 37
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

xsl:analyze-string Example

<xsl:function name="my:markUpPhone">

<xsl:param name="theText"/>

<xsl:analyze-string select="$theText"

regex="[0-9]{{3}}/[0-9]{{3}}-[0-9]{{4}}">

<xsl:matching-substring>

<xsl:element name="phone">

<xsl:value-of select="."/>

</xsl:element>

</xsl:matching-substring>

<xsl:non-matching-substring>

<xsl:copy/>

</xsl:non-matching-substring>

</xsl:analyze-string>

</xsl:function>

can be reached at 231/555-1212 or...

can be reached at <phone>231/555-1212</phone> or...

summer school

www.xmlsummerschool.com Slide 38
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

The regex-group Function

<xsl:function name="my:markUpPhone">

<xsl:param name="theText"/>

<xsl:analyze-string select="$theText"

regex="([0-9]{{3}})/([0-9]{{3}}-[0-9]{{4}})">

<xsl:matching-substring>

<xsl:element name="phone">

<areaCode><xsl:value-of select="regex-group(1)"/></areaCode>

<number><xsl:value-of select="regex-group(2)"/></number>

</xsl:element>

</xsl:matching-substring>

can be reached at 231/555-1212 or...

can be reached at

<phone><areaCode>231</areaCode><number>555-

1212</number></phone> or...

www.xmlsummerschool.com

summer school

© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Inputs and Outputs

summer school

www.xmlsummerschool.com Slide 40
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

The collection function

•The collection function references a collection via

a URI

•Returns a sequence of document nodes

•Collections are implementation defined

–for example:

•Saxon accepts:

–the URI of an XML document that lists the
documents that make up the collection

–a directory name

collection("mycoll.xml")

summer school

www.xmlsummerschool.com Slide 41
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Saxon Collection Example

<collection>

<doc href="./catalogs/cat1.xml"/>

<doc href="./catalogs/cat2.xml"/>

<doc href="./catalogs/cat3.xml"/>

<doc href="./catalogs/cat4.xml"/>

<doc href="./catalogs/cat5.xml"/>

</collection>

<xsl:for-each select="collection('cats.xml')">

<xsl:apply-templates select="catalog"/>

</xsl:for-each>

<catalog>
...

</catalog>

cats.xml
<catalog>

...

</catalog>

<catalog>

...

</catalog>cat1.xml

summer school

www.xmlsummerschool.com Slide 42
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Multiple Result Documents

•xsl:result-document allows you to create a new

result document

–href attribute indicates URI

•Useful for splitting documents

–multiple HTML pages e.g. by chapter or number of
records

–multiple separate transactions in a pipeline

summer school

www.xmlsummerschool.com Slide 43
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Multiple Result Documents Example

<xsl:for-each select="catalog/product">

<xsl:result-document href="prod_{number}.xml">

<xsl:copy-of select="." />

</xsl:result-document>

</xsl:for-each>

<product dept="WMN">

...

</product>

prod_443.xml

<product dept="MEN">

...

</product>

prod_563.xml

<product dept="ACC">

...

</product>

prod_557.xml

summer school

www.xmlsummerschool.com Slide 44
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

The unparsed-text Function

•unparsed-text function allows you to open any

text document as a string

•When combined with xsl:analyze-string, can

allow XSLT to be used to convert non-XML formats
to XML

summer school

www.xmlsummerschool.com Slide 45
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

unparsed-text Example

<xsl:template match="/">

<settings>

<xsl:analyze-string regex="(.*)=(.*)\r\n"

select="unparsed-text('../build.properties')">

<xsl:matching-substring>

<xsl:element name="{regex-group(1)}">

<xsl:value-of select="regex-group(2)"/>

</xsl:element>

</xsl:matching-substring>

</xsl:analyze-string>

</settings>

</xsl:template>

#comment

urlDir=xq

prefix=functx

suffix=xq

<settings>

<urlDir>xq</urlDir>

<prefix>functx</prefix>

<suffix>xq</suffix>

</settings>

www.xmlsummerschool.com

summer school

© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Types and Schemas

summer school

www.xmlsummerschool.com Slide 47
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

The XSLT/XPath 2.0 Type System

•2.0 is more strongly typed than 1.0

•The type system is based on XML Schema

–built-in types from XML Schema (e.g. xs:integer,
xs:string, xs:date) are automatically built into

the language

–other types can be imported from a schema

•Values of a certain type can be constructed

–e.g. xs:date("2004-12-15")

summer school

www.xmlsummerschool.com Slide 48
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Strong Typing: Pros and Cons

•Pro

–easy identification of static errors

•saves time debugging and testing

•identifies errors that even testing may not ever
uncover

–may allow for better optimization

•Con

–adds complexity because explicit casting is
required in some cases

summer school

www.xmlsummerschool.com Slide 49
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Do I Have to Pay Attention to Types?

•Usually, no, not if you don't want to.

–without a schema, your XML data is "untyped"

–in most expressions, untyped values are cast to the
expected types

product/price + 23 if price is untyped, it is cast to
a numeric type automatically

sum(product/price)

summer school

www.xmlsummerschool.com Slide 50
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

When to Pay Attention to Types

•use number and string functions (or type

constructors) to cast between types

substring(string(current-date()),1,4)

without string function, it's a type error

because the substring function is

expecting xs:string values only;

current-date() returns an xs:date.

<xsl:for-each select="//product">

<xsl:if test="number(price) < number(discount)">

...
without number function, 53

will be greater than 144

summer school

www.xmlsummerschool.com Slide 51
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Declaring Types in XSLT

•You can specify types in your XSLT using an as
attribute

–Values must conform to that type

–Helpful for debugging
<xsl:variable name="prods" as="node()*"

select="product"/>

<xsl:param name="prodCount" as="xs:integer?"/>

<xsl:function name="getPrice" as="xs:decimal">...

<xsl:template name="createList" as="element(ul)">...

summer school

www.xmlsummerschool.com Slide 52
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Schemas and XSLT 2.0

•Schemas can pass type information to the
stylesheet

•Use of schemas is optional

•You can:

–validate input and/or result documents

–import schema documents, which lets you:

•know when your XSLT violates the schema

•do special processing based on types

summer school

www.xmlsummerschool.com Slide 53
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

<xsl:stylesheet

<xsl:import-schema

namespace="http://www.datypic.com/prod"

schema-location="prod.xsd" />

<xsl:template match="schema-element(catalog)">

<xsl:for-each select="produt">

<xsl:sort select="product/number"/>

<xsl:value-of select="name + 1"/>

</xsl:for-each>

</xsl:template>

Using Schemas to Catch Static Errors

invalid path;
product will never
have product child

misspelling

type error: name is declared
to be of type xs:string, so

cannot be used in an add
operation

summer school

www.xmlsummerschool.com Slide 54
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Special Processing Based on Type

<xsl:stylesheet

<xsl:import-schema

namespace="http://www.datypic.com/prod"

schema-location="prod.xsd" />

<xsl:template match="element(*,USAddressType)">

.... <xsl:value-of select="city"/>

<xsl:value-of select="zipCode"/>

</xsl:template>

<xsl:template match="element(*,UKAddressType)">

.... <xsl:value-of select="postCode"/>

<xsl:value-of select="city"/>

</xsl:template>

summer school

www.xmlsummerschool.com Slide 55
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

<xsl:stylesheet

<xsl:import-schema

namespace="http://www.datypic.com/res"

schema-location="res.xsd" />

<xsl:template match="catalog">

<xsl:result-document validation="strict">

<res:root>

<xsl:apply-templates/>

</res:root>

</xsl:result-document>

</xsl:template>

Using Schemas to Validate Results

target
namespace

schema
location

explicit
validation

www.xmlsummerschool.com

summer school

© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Miscellaneous Enhancements

summer school

www.xmlsummerschool.com Slide 57
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Temporary Trees

•Variables can contain element structures that can
now be accessed using XPath

•Useful for:

–defining lookup tables

–simplifying queries, especially with multi-step
processes

•In 1.0 this was generally handled by a node-set

extension function

summer school

www.xmlsummerschool.com Slide 58
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Temporary Tree Example

<xsl:variable name="dept_names" >

<Dep code="ACC" name="Accessories" />

<Dep code="MEN" name="Men's" />

<Dep code="WMN" name="Women's" />

</xsl:variable>

<xsl:for-each-group select="catalog/product"

group-by="@dept" >

<DEPT name="{$dept_names/Dep[@code=current-

grouping-key()]/@name}">...</DEPT>

</xsl:for-each-group>

<DEPT name="Accessories">...</DEPT>

<DEPT name="Men's">...</DEPT>

<DEPT name="Women's">...</DEPT>

summer school

www.xmlsummerschool.com Slide 59
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Tunnel Parameters

•Parameters are passed from template to template
implicitly
<xsl:template match="doc">

<xsl:apply-templates>

<xsl:with-param name="docID" select="@id"

tunnel="yes"/>

</xsl:apply-templates>

</xsl:template>

<xsl:template match="chap">

<xsl:apply-templates/>...

<xsl:template match="section">

<xsl:param name="docID" tunnel="yes"/>

<xsl:value-of select="$docID"/>...

no param

summer school

www.xmlsummerschool.com Slide 60
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Modes in XSLT 2.0

•Multiple modes can be specified in template

•#current can be used to pass current mode

•#all keyword can be used to match all modes

<xsl:template match="topic" mode="mainBody index">

<!-- do something -->

<xsl:apply-templates mode="#current"/>

</xsl:template>

<xsl:template match="topic" mode="#all">

<!-- do something -->

</xsl:template>

summer school

www.xmlsummerschool.com Slide 61
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

New select Attribute

•A select attribute can appear on xsl:attribute,
xsl:message, xsl:processing-instruction

<xsl:attribute name="class" select="'boldpara'"/>

<xsl:message select="$theErrorNumber"/>

<xsl:attribute name="class"

select="if ($status='bold')

then 'boldpara'

else 'para'"/>

summer school

www.xmlsummerschool.com Slide 62
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

New separator Attribute

•A separator attribute can appear on
xsl:attribute or xsl:value-of

–If not specified, separator is a space

–XSLT 1.0 would just take the first value!
<nums>

<xsl:attribute name="values" select="//num"

separator=","/>

</nums>

<nums>

<xsl:value-of select="//num" separator=""/>

</nums>

<nums>123144344456</nums>

<nums values="123,144,344,456"/>

Caution!
Backward
incompatibility

summer school

www.xmlsummerschool.com Slide 63
© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

XSLT 2.0 Resources

•XSLT 2.0 Recommendation:

–http://www.w3.org/TR/xslt20

•Book:

–Kay, Michael. XSLT 2.0 and XPath 2.0
Programmer's Reference.

•Reusable XSLT 2.0 functions:

–http://www.xsltfunctions.com

•Saxon:

–http://www.saxonica.com

www.xmlsummerschool.com

summer school

© Copyright 2010 Datypic, Inc.
Used by XML Summer School with permission.

Any questions?

Thank you for your attention.

Priscilla Walmsley

http://www.datypic.com

pwalmsley@datypic.com

