Structuring a Canonical
Model

Priscilla Walmsley
Managing Director, Datypic
pwalmsley@datypic.com
http://www.datypic.com

« XML- and SOA- related development,
consulting, and training

* Projects large and small, including:

— Schema development and design reviews
— SOA design and implementation
— Training in XML technologies

« Background

— Government information sharing (NIEM)
— All things XML (data and documents)
— Metadata repositories

« Components in a "usable" canonical model
are.
— Reusable
— Optimizable
— Flexible
— Extensible
— Understandable
— Implementable

© 2004-2013 Datypic http://www.datypic.com Slide 3

* Wide variety of use cases

— The answer to most design questions starts
with "It depends..."

« Some XML data is temporary
— S0 considered not as crucial as permanent
data "assets"
* Anyone can create XML

— not just database administrators or software
developers

© 2004-2013 Datypic http://www.datypic.com Slide 4

Reusable

* Reuse of schema
components is the whole
point, right?

« But only certain schema
components are
reusable!

© 2004-2013 Datypic http://www.datypic.com Slide 5

Element Declarations
Local Global

Anon/ Russian Doll | Salami Slice

Definitions |[Named/| / Venetian Garden of
Global Blind Eden

© 2004-2013 Datypic http://www.datypic.com Slide 6

* The element/type separation is one of the
beauties of XML Schema

* You can have:

— elements with different names and the same type

 shippingAddress and billingAddress both have
type AddressType

— elements with the same name and different types

- number child of order has a different pattern than number
child of product

© 2004-2013 Datypic http://www.datypic.com Slide 7

» Elements whose purpose is to group
together other elements

—e.g., using an address element to contain
address-related elements instead of a flat

structure
<customer> <customer>
<name>PW</name> <name>PW</name>
<addrl>1 Main</addrl> <address>
<city>TC</city> <linel>1 Main</linel>
<state>MI</state> <city>TC</city>
</customer> <state>MI</state>
</address>
02004 </customer>

« Advantages
— Contents are easier to reuse

— Can provide a stronger content model in the
exchange

* €.g. make the whole address optional or required,
and give components individual cardinalities

— Usually more intuitive to the integration
developer
» Disadvantage
— More verbose

© 2004-2013 Datypic http://www.datypic.com Slide 9

» Think about a broader applicability of your type
— Other contexts such as geopolitical, industry, etc.

« Use general names for types (if appropriate)
— AddressType rather than CustomerAddressType

» Consider named model groups and attribute
groups for definitions that are commonly used
together

© 2004-2013 Datypic http://www.datypic.com Slide 10

Optimizable

* Messages and their schemas
should not contain:

— Lots of unused elements
« empty, nilled, absent but in the schema

— Lots of unnecessary levels of
hierarchy

* This makes them:
— Slow
— Cumbersome for developers
— Cumbersome to document

» Keep them loose!
— Make everything optional
— Make most elements repeating

» Even though a Policy must have an
associated Expiration Date in the
database, it might not be relevant to a
particular context

— Let the integration developer decide what's
required in that particular message

* A significant difference between "data at
rest" and "data in motion"

* One-to-one or one-to-many relationships
can be handled by containment

* Many-to-many relationships are more
challenging

— but less common for service models

» Good for 1-to-1, or 1-to-many relationships
—where "child" entity is not reused anywhere

<department>
<name>Men's</name>
<products>
<product>
<name>Shirt</name>
</product>
<product>
<name>Hat </name>
</product>
</products>
</department>

/www.datypic.com

Slide 14

» Good for many-to-
many relationships

— or where one entity is
used in many
different relationships

» Especially when the
relationship has
properties of its own

© 2004-2013 Datypic http://www.datypic.com

<department id="556">
<name>Men's</name>
</department>
<product id="P400">
<name>Shirt</name>
</product>
<dept-product>
<deptref ref="556">
<productref ref="400">
<mainDept>true</mainDept>
</dept-product>

Slide 15

<department>
<name>Men's</name>
<products>
<product>
<name>Shirt</name>
</product>
</products>
</department>
<department>
<name>Women's</name>
<products>
<product>
<name>Shirt</name>
</product>
</products>
</department>

* Not great for
optimization

» Acceptable for
smaller objects

Slide 16

[p://www.datypic.com

<department>
<name>Men's</name>
<products>
<productref ref="P400"/>
</products>
</department>
<department>
<name>Women ' s</name>
<products>
<productref ref="P400"/>
</products>
</department>
<product id="P400">
<name>Shirt</name>
</product>

« Some models
allow a choice of
reference or
containment

 An abstract
element can be

replaced by either
product Or

productref.

© 2004-2013 Datypic http://www.datypic.com Slide 17

Flexibility

* Models are rarely one-
size-fits-all

e Canonical models
should be flexible to:

— meet a variety of
implementers' needs

— adapt to changes over
time more easily

© 2004-2013 Datypic http://www.datypic.com Slide 18

* Document structures that are less flexible
are.
— faster to learn and easier to remember
— easiler to write code to process

» Document structures that are more flexible
dare:
— often more representative of the real world

— easier to reuse and adapt for other purposes
« including future versions

© 2004-2013 Datypic http://www.datypic.com Slide 19

* More generic properties improve flexibility

<property name="length'">3</property>
<property name="width">5</property>
<property name="type">ABC</property>

» More specific properties are better defined
— Data types

— Cardinalities

<length>3</length>
<width>5</width>
<type>ABC</type>

© 2004-2013 Datypic http://www.datypic.com Slide 20

* A model sometimes requires multiple

representations of the same concept for
different implementations.

» For example, Person Name could be:
— Full Name

— First Name, Middle Name, Last Name
— More complex name representations

» Choice groups or substitution groups can
be used to allow flexibility

» Use choice groups when:
—there is a rigid, fixed set of choices
—the element choices don't have similar types

— It Is desirable to easily see the group in one
place

» Use substitution groups when:
— the set of choices is growing or flexible

— the element choices can have the same or a
derived type

—the same set of choices is used over and over
again, wherever the head element appears

© 2004-2013 Datypic http://www.datypic.com Slide 22

» Code lists also often require flexibility in
physical representation

« Canonical models should be flexible enough
to allow multiple code lists for a particular
property, or an unconstrained text element

» Code lists may or may not be expressed in
XSD, depending on:
— volatility
— number of valid values

T nc:PersonHairColor

fbi:PersonHairColorCode other:PersonHairColorCode

nc:PersonHairColorText _

© 2004-2013 Datypic http://www.datypic.com Slide 24

Extensible

* The canonical model will
not contain everything
required in exchanges

* |t should allow for
extensions:

— at the object level
— at the message level

© 2004-2013 Datypic http://www.datypic.com Slide 25

» Extension methods
— Wildcards in original components
— Complex type extensions
— Substitution groups
— Separate extension areas

» Deliberately allowing for flexibility using any
and anyAttribute

« Can be placed in a specific location in the
content model

» Less control/more flexibility than choice groups
or even substitution groups

— no ability to control choices based on name or type,
just namespace name and how many appear

© 2004-2013 Datypic http://www.datypic.com Slide 27

« Advantages

— extended types have a relationship with the original
types

 provides type hierarchy information to application

« Disadvantages

— requires use of xsi : type or declaration of new
elements

* Only possible if:

— types are named
— lypes use sequence groups, Not choice 0r all

© 2004-2013 Datypic http://www.datypic.com Slide 28

« Advantages

— the only way to extend choice groups without imposing
an order on them

— more controlled than wildcards
« Disadvantages

— applications need to be able to handle element names
they don't expect based on the original schema

* Only possible if:
— elements are globally declared
— new elements' types are derived from originals

© 2004-2013 Datypic http://www.datypic.com Slide 29

Example

— Common area contains
completely interoperable
objects

— Extensions are separated with
references back to common
objects

— Useful if core interoperability is
important

ﬁessage

Person
Name
DOB

Common

id="P1"

~

4 Extensions

Parolee ref="P1"

Parole Date

\

<

>

© 2004-2013 Datypic http://www.datypic.com

Slide 30

Understandable

* Models that everyone can understand are:
— Easier to learn
— Easier to debug and change
— More likely to be reused

» Aspects of understandability:
— Searchability
— Consistency
— Simplicity

© 2004-2013 Datypic http://www.datypic.com Slide 31

Ability to use tools as a finding aid
Creation of synonyms

Annotation of components with keywords
Complete documentation

Organization of components for browsing

© 2004-2013 Datypic http://www.datypic.com Slide 32

* Achieve consistency wherever possible in:

— Structure

» Use of structural elements, attributes vs. elements, etc.
— Naming

« Separators/capitalization

» Glossary of standard terms

» Using name parts (e.g. Object Term, Property Term,
Representation Term)

« |dentification of components by type
— Order of properties

© 2004-2013 Datypic http://www.datypic.com Slide 33

» Consistency is also achieved by practicing
reuse within your canonical model
— Reusing types
— Reusing content model fragments through:
» complex type extension

* named model groups
« common structural elements

© 2004-2013 Datypic http://www.datypic.com Slide 34

» Use sequence groups for properties

* Save choice groups for true choices

— Repeating choice groups can't enforce
cardinalities

— Extending choice groups is complicated
* Do not use all groups due to their

limitations

— Elements can't repeat

— Types cannot be extended

© 2004-2013 Datypic http://www.datypic.com Slide 35

 Limit the number of different XSD features
you are using
» Have a simple namespace strategy
— keep down the number of namespaces
— always use qualified local elements
— don't use chameleon components

© 2004-2013 Datypic http://www.datypic.com Slide 36

Implementable

 Using the canonical model cannot
be seen as interfering with
iImplementation in applications

« Make it easy through:

— useful tools that take the manual
tedium out

— good examples
— well-defined (but simple) process

© 2004-2013 Datypic http://www.datypic.com Slide 37

« Some XSD features are not well supported
by some toolsets:
— Mixed content

— Complicated content models with nested
model groups

— Dynamic type substitution using xsi:type
— Default and fixed values
— Redefinition using xsd:redefine

© 2004-2013 Datypic http://www.datypic.com Slide 38

» Keep your versioning strategy as simple as
possible
— Version at a coarse level

— Have a well-defined strategy that is
predictable

— Use namespaces to isolate major versions
* Minimize versioning impact on existing
applications

—e.g., do not require upgrades to latest version
If not required

© 2004-2013 Datypic http://www.datypic.com Slide 39

* More on XML design in general
— http://www.datypic.com/services/xmldesign/

