
Structuring a Canonical

Model

Priscilla Walmsley

Managing Director, Datypic

pwalmsley@datypic.com

http://www.datypic.com

About Datypic

• XML- and SOA- related development,

consulting, and training

• Projects large and small, including:

– Schema development and design reviews

– SOA design and implementation

– Training in XML technologies

• Background

– Government information sharing (NIEM)

– All things XML (data and documents)

– Metadata repositories

Structuring a

Canonical Model

• Components in a "usable" canonical model
are:

– Reusable

– Optimizable

– Flexible

– Extensible

– Understandable

– Implementable

© 2004-2013 Datypic http://www.datypic.com Slide 3

© 2004-2013 Datypic http://www.datypic.com Slide 4

Why is So Little Attention

Paid To XML Modeling?

• Wide variety of use cases

– The answer to most design questions starts

with "It depends..."

• Some XML data is temporary

– so considered not as crucial as permanent

data "assets"

• Anyone can create XML

– not just database administrators or software

developers

Reusable

• Reuse of schema
components is the whole
point, right?

• But only certain schema
components are
reusable!

© 2004-2013 Datypic http://www.datypic.com Slide 5

© 2004-2013 Datypic http://www.datypic.com Slide 6

Global vs. Local

Definitions

Element Declarations

Local Global

Type

Definitions

Anon/

Local

Russian Doll Salami Slice

Named/

Global

Venetian

Blind

Garden of

Eden

© 2004-2013 Datypic http://www.datypic.com Slide 7

Reusing Elements and

Types

• The element/type separation is one of the

beauties of XML Schema

• You can have:

– elements with different names and the same type

•shippingAddress and billingAddress both have

type AddressType

– elements with the same name and different types
• number child of order has a different pattern than number

child of product

© 2004-2013 Datypic http://www.datypic.com Slide 8

Structural Elements

• Elements whose purpose is to group
together other elements

– e.g., using an address element to contain

address-related elements instead of a flat

structure
<customer>

<name>PW</name>

<addr1>1 Main</addr1>

<city>TC</city>

<state>MI</state>

</customer>

<customer>

<name>PW</name>

<address>

<line1>1 Main</line1>

<city>TC</city>

<state>MI</state>

</address>

</customer>

Using Structural

Elements

• Advantages

– Contents are easier to reuse

– Can provide a stronger content model in the

exchange

• e.g. make the whole address optional or required,
and give components individual cardinalities

– Usually more intuitive to the integration

developer

• Disadvantage

– More verbose
© 2004-2013 Datypic http://www.datypic.com Slide 9

© 2004-2013 Datypic http://www.datypic.com Slide 10

Other Considerations for

Reusable Components

• Think about a broader applicability of your type

– Other contexts such as geopolitical, industry, etc.

• Use general names for types (if appropriate)

– AddressType rather than CustomerAddressType

• Consider named model groups and attribute

groups for definitions that are commonly used

together

Optimizable

• Messages and their schemas
should not contain:

– Lots of unused elements

• empty, nilled, absent but in the schema

– Lots of unnecessary levels of

hierarchy

• This makes them:

– Slow

– Cumbersome for developers

– Cumbersome to document

Cardinalities

• Keep them loose!

– Make everything optional

– Make most elements repeating

• Even though a Policy must have an
associated Expiration Date in the
database, it might not be relevant to a
particular context

– Let the integration developer decide what's

required in that particular message

Handling

Relationships

• A significant difference between "data at
rest" and "data in motion"

• One-to-one or one-to-many relationships
can be handled by containment

• Many-to-many relationships are more
challenging

– but less common for service models

© 2004-2013 Datypic http://www.datypic.com Slide 14

1. Relationships

through Containment

• Good for 1-to-1, or 1-to-many relationships

– where "child" entity is not reused anywhere
<department>

<name>Men's</name>

<products>

<product>

<name>Shirt</name>

</product>

<product>

<name>Hat</name>

</product>

</products>

</department>

"a department can
be associated
with one or more
products"

© 2004-2013 Datypic http://www.datypic.com Slide 15

2. Relationships through

Separate Elements

• Good for many-to-
many relationships

– or where one entity is

used in many

different relationships

• Especially when the
relationship has
properties of its own

<department id="556">

<name>Men's</name>

</department>

<product id="P400">

<name>Shirt</name>

</product>

<dept-product>

<deptref ref="556">

<productref ref="400">

<mainDept>true</mainDept>

</dept-product>

3. Relationships

through Repetition

• Not great for
optimization

• Acceptable for
smaller objects

© 2004-2013 Datypic http://www.datypic.com Slide 16

<department>

<name>Men's</name>

<products>

<product>

<name>Shirt</name>

</product>

</products>

</department>

<department>

<name>Women's</name>

<products>

<product>

<name>Shirt</name>

</product>

</products>

</department>

4. Relationships

through References

• Some models
allow a choice of
reference or
containment

• An abstract
element can be
replaced by either
product or
productref.

© 2004-2013 Datypic http://www.datypic.com Slide 17

<department>

<name>Men's</name>

<products>

<productref ref="P400"/>

</products>

</department>

<department>

<name>Women's</name>

<products>

<productref ref="P400"/>

</products>

</department>

<product id="P400">

<name>Shirt</name>

</product>

Flexibility

• Models are rarely one-
size-fits-all

• Canonical models
should be flexible to:

– meet a variety of

implementers' needs

– adapt to changes over

time more easily

© 2004-2013 Datypic http://www.datypic.com Slide 18

© 2004-2013 Datypic http://www.datypic.com Slide 19

How Much Flexibility?

• Document structures that are less flexible
are:
– faster to learn and easier to remember

– easier to write code to process

• Document structures that are more flexible
are:
– often more representative of the real world

– easier to reuse and adapt for other purposes
• including future versions

© 2004-2013 Datypic http://www.datypic.com Slide 20

Generic vs. Specific

Elements: A Tradeoff

• More generic properties improve flexibility

• More specific properties are better defined

– Data types

– Cardinalities
<length>3</length>

<width>5</width>

<type>ABC</type>

<property name="length">3</property>

<property name="width">5</property>

<property name="type">ABC</property>

Flexibility of

Representation

• A model sometimes requires multiple
representations of the same concept for
different implementations.

• For example, Person Name could be:
– Full Name

– First Name, Middle Name, Last Name

– More complex name representations

• Choice groups or substitution groups can
be used to allow flexibility

© 2004-2013 Datypic http://www.datypic.com Slide 22

Choice Groups vs.

Substitution Groups

• Use choice groups when:
– there is a rigid, fixed set of choices

– the element choices don't have similar types

– it is desirable to easily see the group in one
place

• Use substitution groups when:
– the set of choices is growing or flexible

– the element choices can have the same or a
derived type

– the same set of choices is used over and over
again, wherever the head element appears

Code Lists

• Code lists also often require flexibility in
physical representation

• Canonical models should be flexible enough
to allow multiple code lists for a particular
property, or an unconstrained text element

• Code lists may or may not be expressed in
XSD, depending on:

– volatility

– number of valid values

© 2004-2013 Datypic http://www.datypic.com Slide 24

NIEM Code List

Substitution Example

nc:PersonHairColor

fbi:PersonHairColorCode

nc:PersonHairColorText

other:PersonHairColorCode

HEAD (anyType, abstract)

MEMBERS

Extensible

• The canonical model will
not contain everything
required in exchanges

• It should allow for
extensions:

– at the object level

– at the message level

© 2004-2013 Datypic http://www.datypic.com Slide 25

Extensions

• Extension methods

– Wildcards in original components

– Complex type extensions

– Substitution groups

– Separate extension areas

© 2004-2013 Datypic http://www.datypic.com Slide 27

Wildcards as

Extension Mechanism

• Deliberately allowing for flexibility using any

and anyAttribute

• Can be placed in a specific location in the

content model

• Less control/more flexibility than choice groups

or even substitution groups

– no ability to control choices based on name or type,
just namespace name and how many appear

Type Derivation as

Extension Mechanism

• Advantages

– extended types have a relationship with the original
types

• provides type hierarchy information to application

• Disadvantages

– requires use of xsi:type or declaration of new

elements

• Only possible if:

– types are named

– types use sequence groups, not choice or all

© 2004-2013 Datypic http://www.datypic.com Slide 28

© 2004-2013 Datypic http://www.datypic.com Slide 29

Substitution Groups as

Extension Mechanism

• Advantages
– the only way to extend choice groups without imposing

an order on them

– more controlled than wildcards

• Disadvantages
– applications need to be able to handle element names

they don't expect based on the original schema

• Only possible if:
– elements are globally declared

– new elements' types are derived from originals

Extension Area

• Example

– Common area contains

completely interoperable

objects

– Extensions are separated with

references back to common

objects

– Useful if core interoperability is

important

© 2004-2013 Datypic http://www.datypic.com Slide 30

Message

Common

Person id="P1"

Name

DOB

Extensions

Parolee ref= "P1"

Parole Date

Understandable

• Models that everyone can understand are:

– Easier to learn

– Easier to debug and change

– More likely to be reused

• Aspects of understandability:

– Searchability

– Consistency

– Simplicity

© 2004-2013 Datypic http://www.datypic.com Slide 31

Searchability

• Ability to use tools as a finding aid

• Creation of synonyms

• Annotation of components with keywords

• Complete documentation

• Organization of components for browsing

© 2004-2013 Datypic http://www.datypic.com Slide 32

Consistency

• Achieve consistency wherever possible in:

– Structure

• Use of structural elements, attributes vs. elements, etc.

– Naming

• Separators/capitalization

• Glossary of standard terms

• Using name parts (e.g. Object Term, Property Term,
Representation Term)

• Identification of components by type

– Order of properties

© 2004-2013 Datypic http://www.datypic.com Slide 33

Consistency through

Reuse

• Consistency is also achieved by practicing
reuse within your canonical model

– Reusing types

– Reusing content model fragments through:

• complex type extension

• named model groups

• common structural elements

© 2004-2013 Datypic http://www.datypic.com Slide 34

Consistency through

Ordering

• Use sequence groups for properties

• Save choice groups for true choices

– Repeating choice groups can't enforce

cardinalities

– Extending choice groups is complicated

• Do not use all groups due to their

limitations

– Elements can't repeat

– Types cannot be extended
© 2004-2013 Datypic http://www.datypic.com Slide 35

Simplicity

• Limit the number of different XSD features
you are using

• Have a simple namespace strategy

– keep down the number of namespaces

– always use qualified local elements

– don't use chameleon components

© 2004-2013 Datypic http://www.datypic.com Slide 36

Implementable

• Using the canonical model cannot
be seen as interfering with
implementation in applications

• Make it easy through:

– useful tools that take the manual

tedium out

– good examples

– well-defined (but simple) process

© 2004-2013 Datypic http://www.datypic.com Slide 37

Avoid Non-Mainstream

XSD Features

• Some XSD features are not well supported
by some toolsets:

– Mixed content

– Complicated content models with nested

model groups

– Dynamic type substitution using xsi:type

– Default and fixed values

– Redefinition using xsd:redefine

© 2004-2013 Datypic http://www.datypic.com Slide 38

Versioning

• Keep your versioning strategy as simple as
possible

– Version at a coarse level

– Have a well-defined strategy that is

predictable

– Use namespaces to isolate major versions

• Minimize versioning impact on existing
applications

– e.g., do not require upgrades to latest version

if not required
© 2004-2013 Datypic http://www.datypic.com Slide 39

Questions?

• More on XML design in general

– http://www.datypic.com/services/xmldesign/

