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Abstract

Schemas must be developed with a variety of design considerations such as reuse, graceful versioning,
flexibility and tool support, all of which can significantly impact the success of service implementation
projects. This article explains the role of schemas in a Web services environment, describes the qualities
of a well-designed schema, and provides some pointers for achieving that good design. It also provides
guidelines a creating a Naming and Design Rules (NDR) document that forces the consideration of
design issues at an enterprise level before service implementation begins.
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Introduction
XML Schemas are a fundamental part of any XML-based service oriented architecture. They define the
structure and content of the messages that are passed among services. Enterprise architects, DBAs and
software developers often devote a lot of time to carefully designing data: they create enterprise data
models, data dictionaries with strict naming and documentation standards, and carefully designed and
optimized relational databases. Unfortunately, service designers and implementers often do not pay as
much attention to good design when it comes to XML messages.

There are several reasons for this. Some people feel that since the XML messages are transitory, it is not
important how they are structured. Some decide that it is easier to use whatever schema is generated for
them by a toolkit. Others decide to use an industry standard XML vocabulary, but fail to figure out how their
data really fits into that standard or come up with a strategy for how to customize it for their needs.
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As with any data design, there are many ways to structure XML messages. For example, decisions must
be made about how many levels of structural elements to include, whether the elements should represent
generic or more specific concepts, how to represent relationships, and how far to break down data into
separate elements. In addition, there are multiple ways to express the XML structure in XML Schema.
Decisions must be made about whether to use global vs. local declarations, whether to use named vs.
anonymous types, whether to achieve reuse through type extension or through named model groups, and
how schemas should be broken down into separate schema documents.

The choices you make when designing a schema can have a significant impact on the ease of
implementation, ease of maintenance, and even the ongoing relevance of the service itself. Failure to take
into account design goals such as reuse, graceful versioning, flexibility and tool support can have serious
financial impacts on service implementation projects.

This article explains the role of schemas in a Web services environment, describes the qualities of a well-
designed schema, and provides some pointers for achieving that good design. It also provides guidelines
a creating a Naming and Design Rules (NDR) document that forces the consideration of design issues at
an enterprise level before service implementation begins.

Uses for schemas
When designing an XML Schema, it is first important to understand what it will be used for. Schemas actually
play several roles:

• Validation. Validation is the purpose that is most often associated with schemas. Given an XML
message, you can use a schema to automatically determine whether that message is valid or invalid.
Are all of the required elements there, in the right order? Do they contain valid values according to
their data types? Schema validation does a good job of checking the basic structure and content
of elements.

• A service contract. A schema serves as part of the understanding between two parties. The service
provider and the service consumer can both use the schema as a machine-enforceable set of rules
describing the interface.

• Documentation. Schemas are used to document the service contract for the developers and end
users that will be implementing or using the service. Narrative human-readable annotations can be
added to schema components to further document them. Although XML Schemas themselves are
not particularly human-readable, they can be viewed by less technical users in a graphical XML editor
tool. In addition, there are a number of tools that will generate HTML documentation from schemas,
making them more easily understood.

• Code generation. Schemas are also commonly used by Web services software products to generate
classes and interfaces that are used to read and write the XML message payloads. When a service
contract is designed first, classes can be generated automatically from the schema definitions,
ensuring that they match. The schema provides information not only about what elements (objects)
will appear in XML messages, but also about their data types.

As you can see, schemas are an important part of a service-oriented environment. Although it is certainly
possible to implement Web services without schemas, valuable functionality would be lost. You would be
forced to use a non-standard method to validate your messages, document your interface, and generate
your service classes. You also would not be able to take advantage of the many schema-based tools that
implement this functionality at low cost.
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The various roles of XML schemas should be taken into account when designing them. For example, use
of obscure schema features can make code generation difficult, or not adequately documenting schemas
can impact the usefulness of generated documentation.

XML Schema design goals
Designing schemas well is a matter of paying attention to certain important design considerations: flexibility
and extensibility, reusability, clarity and simplicity, support for versioning, interoperability and tool support.
The rest of this article takes a closer look at each of these design goals.

Flexibility and extensibility
Schema design often requires a balancing act between flexibility on the one hand, versus rigidity on the
other. For example, suppose I am selling digital cameras that have a variety of features, such as resolution,
battery type, and screen size. Each camera model has a different set of features, and the types of features
change over time as new technology is developed. When designing a message that incorporates these
camera descriptions, I want enough flexibility to handle variations in feature types, without having to redesign
my message every time a new feature comes along. On the other hand, I want to be able to accurately and
precisely specify these features.

To allow for total flexibility in the camera features I could to declare a features element whose type contains
an xsd:any wildcard, which means that any well-formed XML is allowed. This would have the advantage of
be extremely versatile and adaptable to change. The disadvantage is that the message structure is very
poorly defined. A developer trying to write an application to process the message would have no idea what
features to expect, and what format they might have.

On the other hand, I can declare highly constrained elements for each feature, with no opportunity for
variation. This has the benefit of making the features well defined, easy to validate and much more
predictable. Validation is more effective because certain features can be required, and their values can be
constrained by specific data types. However, the schema is brittle because it must be changed every time
a new feature is introduced. When the schema changes, the applications that process the documents must
also often change.

The ideal design is usually somewhere in the middle. A balanced approach in the case of the camera
features might be to create a repeating feature element that contains the name of the feature as an attribute,
and the value of the feature as its content. This eliminates the brittleness while still providing a predictable
structure for implementers.

Reusability
Reuse is an important goal in the design of any software. Service contracts that reuse XML components
across multiple messages are easier for developers and users to learn, are more consistent, and save
development and maintenance time that would be spent writing redundant software components.

Reuse can be achieved in XML design in a number of ways in XML Schema.
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Reusing types

It is highly desirable to reuse complex and simple types in multiple element and attribute declarations. For
example, you can define a complex type named AddressType that represents a mailing address, and then
use it for both BillingAddress and ShippingAddress elements. Only named, global types can be reused; so
types in XML Schema, particularly in a service-oriented environment, should always be named.

Type inheritance

XML Schema complex types can be specialized from other types using the xsd:extension element. For
example, I can create a more generic type ProductType and derive types named CameraType and LensType
from it. This is a form of reuse because CameraType and LensType inherit a shared set of properties from
ProductType.

Named model groups and attribute groups

Through the use of named model groups (the xsd:group element), it is possible to define reusable pieces
of content models. This is useful alternative to type inheritance, for types that are semantically different but
just happen to share some properties with other types.

Reusing schema documents

Entire schema documents can be reused by taking advantage of the xsd:include and xsd:import
mechanisms of XML Schema. This is useful for defining components that might be used in several different
contexts or services. In order to plan for reuse, schema documents should be broken down into logical
components by subject area. Having schema documents that are too large and all-encompassing tends to
inhibit reuse because it forces other schema documents to take all or nothing when importing them. It is
also good practice to create a "core components" schema that has low-level building blocks, such as types
for Address and Quantity, that are imported by all other schema documents.

Clarity and simplicity

Although most XML documents in a Web services environment are both written and read by software
applications, they still should be designed in a way that they are easy to conceptualize and process.
Implementers on both sides of the service contract writing and maintaining applications to process these
messages, and they must understand them. Overly complex message designs lead to overly complex
applications that create and process them, and both are hard to learn and maintain.

Naming and documentation

Properly and consistently naming schema components (elements, attributes, types, groups) can go a long
way toward making the documents comprehensible. Using a common set of terms rather than multiple
synonymous terms is good practice, as is the avoidance of obscure acronyms. In XML Schema, it is helpful
to identify the kind of component in its name, for example using the word "Type" at the end of type names.
Namespaces should also be consistently and meaningfully named.

Of course, good documentation is very important to achieving clarity. XML Schema allows components to be
documented using xsd:annotation elements. While you probably have other documentation that describes
your service contract, having human-readable definitions of the components in your schema is very useful
to people who maintain that schema. It also allows you to use tools that automatically generate schema
documentation more effectively.
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Clarity of structure

Consistent structure can also help improve clarity. For example, if many different types have child elements
Identifier and Name, put them first and always in the same order. Reuse of components helps to ensure
consistent structure.

It is often difficult to determine how many levels of elements to put in a message. Having structural elements
that group together related properties can help with understanding. For example, embedding all address-
related elements (street, city, etc.) inside an Address child element rather than directly inside a Customer
element is an obvious choice. It makes the components of the address clearly contained and allows you
to make the entire address optional or repeating.

It is also often useful to use structural elements to contain lists of like elements. For example, it is a good
idea to embed a repeating sequence of OrderedItem elements inside an OrderedItems (plural) container
rather than directly inside a PurchaseOrder element. These container elements can make messages easier
to process and often work better with code generation tools.

However, there is such a thing as excessive use of structural elements. XML messages that are a dozen
levels deep can become unwieldy and difficult to process.

Support for graceful versioning

Service contracts will change over time. Schemas should be designed in accordance with a plan for how to
handle changes in a way that causes minimum impact on service consumers. A typical service versioning
strategy differentiates between major versions and minor versions. Major versions, e.g. 1.0, 2.0 and 3.0,
are by definition disruptive and not backward compatible; at times this is an unavoidable part of software
evolution. On the other hand, minor versions, e.g. 1.1, 1.2 and 1.3, are backward compatible. They involve
changes to schemas that will still allow old message instances to be valid according to the new schema.
For example, a version 1.2 message can be valid according to a version 1.3 schema if the version 1.3 limits
itself to backward compatible changes, such as:

• adding optional elements

• loosening occurrence restrictions, for example making a required element optional

• making types less restrictive, for example adding enumerations to a code list

Some service designers take their versioning strategy a step further; they make schemas forward
compatible. That is, a version 1.3 instance is valid according to the version 1.2 schema. This requires some
careful planning when developing the version 1.2 schema. An area needs to be set aside for the (optional)
elements added in version 1.3. This area needs to be allowed to contain any content in the version 1.2
schema, but be more specifically defined (to add new element declarations) in the version 1.3 schema.

Namespace names often play a role in versioning because changing a namespace is necessarily backward
incompatible. Often, namespace names reflect the major version of an XML schema but not the minor
version.

A complete strategy for versioning is outside the scope of this article, but is covered more fully in the book
Web Service Contract Design and Versioning for SOA (Prentice Hall, 2008).
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Interoperability and tool compatibility
Schemas are used heavily by tools, not just for validation but also for the generation of code and
documentation. In an ideal world, all Web services toolkits would support the exact same schema language,
and all schemas would be interoperable. The unfortunate reality is that tools, especially code generation
tools, vary in their support for XML Schema, for several reasons:

• Some toolkits incorrectly implement features of XML Schema because the recommendation is highly
complex and in some cases even ambiguous.

• Some Web services toolkits deliberately do not support certain features of XML Schema 1.0 because
they do not find them to be relevant or useful.

• Some XML Schema concepts do not map cleanly onto object-oriented concepts. Even if a toolkit
attempts to support these features, it may do so in a less than useful way.

In general, it is best to stick to a subset of the XML Schema language that is well supported by major toolkits.
Features of XML Schema to avoid in a Web services environment include:

• mixed content (elements that allow text content as well as children)

• xsd:choice and xsd:all model groups

• complex content models with nested model groups

• substitution groups

• dynamic type substitution using the xsi:type attribute

• default and fixed values for elements or attributes

• redefinition of schema documents using xsd:redefine

It is advisable to test your schemas against a variety of toolkits to be sure that they can handle them
gracefully.

Developing a strategy, or NDR
Many organizations that are implementing medium- to large-scale service-oriented architectures develop
enterprise-wide guidelines for schema design, taking into account the considerations described in this
article. Sometimes these documents are referred to as Naming and Design Rules (NDR) documents.

Using an NDR has a number of benefits:

• It promotes a standard approach to schema development that improves consistency and therefore
clarity.

• It ensures that certain strategies, such as how to approach versioning, are well thought out before
too much investment in development has been made.

• It allows the proposed approach to be checked with toolkits in use in the organization to see if they
generate manageable code.

• It serves as a basis for design reviews, which are a useful way for centralized data architects to guide
or even enforce design standards within an organization.
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A schema design strategy should include the following components:

• Naming standards: what characters to use as separators between words, upper vs. lower case
names, special considerations for naming types and groups

• Documentation standards: the types of documentation required for schema components, where
they are to be documented

• Namespaces: what they should be named, how many to have, how many schema documents to
use per namespace

• XML Schema design: a list of allowed (or prohibited) XML Schema features, limited to promote
simplicity and interoperability

• Versioning strategy: whether to require forward compatibility (and if so how to accomplish it), list
of allowed schema changes for backward-compatible minor versions

• Schema reuse strategy: how many schema documents to have (one per subject area? one per
business division?), recommended folder structure, and an approach for core components

• Incorporation of external standards: which external standards are approved for use, description
of the correct way to incorporate or extend them

• Incorporation of enterprise standards: for organizations that have an enterprise data model and/
or enterprise architecture, how the schemas map to that model

Conclusion
XML schemas are an important part a service-oriented environment in that they describe the content of XML
messages, are used to automatically ensure that messages are correct, and are often used to generate
application code. As such, they should be carefully designed and developed, taking into account a number
of factors such as clarity, extensibility, versioning and tool support. In an ideal environment, a strategy in
the form of an NDR is developed to address these concerns before a large-scale investment in service
development.

For more information
• Definitive XML Schema, Priscilla Walmsley, Prentice Hall, 2012.

• Web Service Contract Design and Versioning for SOA. Erl, Karmarkar, Walmsley, et. al., Prentice
Hall, 2008.
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