
© 2010-2014 Datypic, Inc. Page 1 http://www.datypic.com

Creating a NIEM 2.1 IEPD
Priscilla Walmsley <pwalmsley@datypic.com>

May 18, 2010

Abstract

NIEM is rapidly becoming the most important XML exchange standard for the U.S. government and its
information partners. This article provides an overview of the process of defining a NIEM information
exchange (IEPD). It then takes you through the steps required to create the IEPD. A simple case study is
used to illustrate the process.

Table of Contents
Introducing NIEM ... 2

How do you use NIEM? ... 2
Developing an IEPD .. 3

Step 1: Model your NIEM exchange ... 3
Understanding the NIEM model .. 3
Modeling your exchange .. 5
Summary ... 9

Step 2: Map and subset NIEM ... 9
Mapping your model to NIEM ... 9
Creating a NIEM subset ... 14
Summary ... 22

Step 3: Extend NIEM ... 22
Writing NIEM schemas ... 23
Extension schemas .. 24
Exchange schemas .. 28
Naming and documenting NIEM components .. 30
Modifying the subset .. 31
Documenting your mapping in the CMT .. 32
Summary ... 32

Step 4: Assemble the IEPD .. 32
IEPD documentation .. 33
Creating sample documents ... 33
Creating rendering instructions ... 34
Assembling an IEPD .. 35
Validating the IEPD .. 42
Submitting an IEPD to public repositories .. 45
LEXS: An alternatives to creating an entire IEPD .. 46

Conclusion ... 46
About the author .. 46
About Datypic .. 47
About this article .. 47

http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 2 http://www.datypic.com

Introducing NIEM
The National Information Exchange Model (NIEM) is a U.S. government-sponsored initiative to facilitate
information sharing among public and private sector organizations. Its initial focus was on law enforcement,
public safety, and emergency management, but it is continuously being expanded into other domains.
New XML initiatives within the U.S. Department of Justice and Department of Homeland Security, along
with other sectors of the U.S. government, use NIEM as a common base data model and methodology
to promote interoperability of data and software, reduce design and development time for information
exchange applications, and allow the reuse of intellectual capital and skills across multiple projects.

NIEM is described as a framework, because it is not just an XML vocabulary for information exchange. It
has several components:

• A common XML-based data model called NIEM core that provides data components for describing
universal objects such as people, locations, activities, and organizations

• More specialized XML data models for individual use cases, called domains (examples include
Justice, Immigration, and Emergency Management)

• A methodology for using and extending the building blocks that come from the common and
domain-specific models to turn them into a complete information exchange, known as an information
exchange package

• Tools to help develop, validate, document, and share the information exchange packages

• A governance organization that provides training and support and oversees NIEM's evolution over
time

How do you use NIEM?

The NIEM XML data model provides building blocks for common objects. A building block may be at a very
granular level, such as "person name" or "birth date," or a much more complex component, such as "arrest"
or "court case." However, the NIEM model itself doesn't define complete information exchange messages
such as "Arrest Report" or "Suspicious Activity Report." It does not designate any specific message types
or root elements of XML documents.

To actually use NIEM, you need to build an IEPD. The IEPD pulls the necessary components from the
NIEM core and domain models and extends them to create an information exchange. An IEPD contains
several artifacts:

• XML schemas that define the subset of the NIEM model used in this exchange, known as the subset
schema

• A schema that defines the root element of the exchange, known as the exchange schema

• A schema that defines extensions to the NIEM model, known as the extension schema

• Documentation of the exchange, such as UML diagrams, narrative descriptions, and samples

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 3 http://www.datypic.com

Developing an IEPD
The first task in any information exchange project is to gather and analyze your requirements. NIEM does
not require any particular method of defining requirements, so this article doesn't describe this process. In
fact, this article assumes that before you sit down to actually create your IEPD, you have an idea of the data
elements you want to exchange and the type of messages you want to structure them into.

This article will work through a simple example from start to finish, with the result being a complete IEPD. The
example case study will be to implement a simple theft report that covers registered vehicles. Hypothetically,
local law enforcement would use the theft report to inform interested parties, such as the Division of
Motor Vehicles or the City Bicycle Registration Bureau, of thefts of motor vehicles and bicycles. During my
requirements gathering phase, I have gathered general information on the data that needs to be shared
and determined that only one type of message is required: the theft report. In reality, an IEPD often consists
of multiple related message types.

Because a main goal of NIEM is data interoperability, it makes sense to consider reusing an existing IEPD
before creating a new one from scratch. NIEM provides a Shared IEPDs site that allows you to search for
existing IEPDs submitted by other organizations.

If you can't find an existing IEPD that suits your needs, you will need to build one. Developing a new NIEM
IEPD requires five steps:

1. Model your exchange.

2. Map your exchange to the NIEM data model.

3. Create a subset of the NIEM model for use in your exchange.

4. Create exchange and extension schemas to describe your custom components.

5. Assemble an IEPD with all of the appropriate artifacts.

This article describes these five steps, each in a separate section. Even if you choose to reuse an existing
IEPD, this article might still be a useful guide to help you to understand the content and structure of the
IEPDs you are using.

Step 1: Model your NIEM exchange

Understanding the NIEM model
Before you create a model for your exchange, it is useful to understand how the NIEM data model is
structured. NIEM defines concepts—such as types, properties, and associations—that are probably familiar
to you from other data modeling paradigms.

NIEM model concepts

Types represent things, both tangible and intangible. Some of the most fundamental types in the
NIEM model are PersonType, ActivityType, ItemType, LocationType, and OrganizationType. There are also

http://www.datypic.com/
http://www.datypic.com/
http://niem.gtri.gatech.edu/niemtools/iepdt/search/index.iepd

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 4 http://www.datypic.com

thousands more, with varying degrees of granularity. Types might be known as classes or entities in other
modeling paradigms.

Properties are attributes of types. They can themselves have complex types. For example, PersonName is
a property of PersonType, but it is also has a type PersonNameType that has its own structure containing
PersonGivenName, PersonSurName, and so on.

Types can be derived from other types and inherit their properties, which is analogous to generalizations
in an object-oriented model. For example, ItemType is a generic type that has many types derived from it,
including VehicleType, JewelryType and RealEstateType.

Associations are relationships between two types. You might have an association between an Incident and
a Person, or a Person and a Location. Associations in NIEM are separate from the types they relate.

Roles represent temporary affiliations that a type might have in a particular context. For example, in a theft
incident, a person might play the role of either Victim, Subject, or Witness.

Augmentations are bundles of properties that you can reuse and share. These are more commonly used
in the NIEM domain models than in your IEPDs.

Metadata is information about the content of a message, such as when the information was gathered and
how reliable it is. NIEM makes special provisions in its model for relating data to metadata.

The NIEM model in XML

The NIEM model is implemented entirely as a set of W3C XML Schema documents. Annotations and
references within the XML schemas are used to indicate whether something is a type, an association, and
so on. Fortunately, you do not have to read the XML schema documents themselves to navigate the model;
NIEM provides tools to search and navigate the model in a more graphical fashion.

In general, NIEM types are implemented as XML Schema complex types, and properties are elements
contained within those types. Example 1 shows how an activity is represented by an ActivityType complex
type, with properties such as ActivityIdentification and ActivityCategoryText implemented as child
elements.

Example 1. Partial NIEM ActivityType implementation in XML Schema

<xsd:complexType name="ActivityType">
 <xsd:complexContent>
 <xsd:extension base="s:ComplexObjectType">
 <xsd:sequence>
 <xsd:element ref="nc:ActivityIdentification" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="nc:ActivityCategoryText" minOccurs="0" maxOccurs="unbounded"/>
 <!-- ... -->
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

NIEM uses XML Schema extensions for type derivation. Example 2 shows how a more specific kind of
activity—the AssessmentType complex type—is derived from ActivityType.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 5 http://www.datypic.com

Example 2. NIEM type derivation in XML Schema

<xsd:complexType name="AssessmentType">
 <xsd:complexContent>
 <xsd:extension base="nc:ActivityType">
 <xsd:sequence>
 <xsd:element ref="nc:AssessmentScoreText" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="nc:AssessmentFee" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="nc:AssessmentProgram" minOccurs="0" maxOccurs="unbounded"/>
 <!-- ... -->
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Associations are special kinds of complex types that contain references to the types they associate.
Example 3 shows how an association between a person and an activity—ActivityPersonAssociationType—
is implemented. All association types are extensions (directly or indirectly) of the NIEM core
AssociationType.

Example 3. NIEM association type in XML Schema

<xsd:complexType name="ActivityPersonAssociationType">
 <xsd:complexContent>
 <xsd:extension base="nc:AssociationType">
 <xsd:sequence>
 <xsd:element ref="nc:ActivityReference" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="nc:PersonReference" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Modeling your exchange
NIEM does not require that you use any particular methodology or diagram types to model your XML
exchange or even that you model it at all. However, modeling is an important step in IEPD design. The
modeling process fleshes out the requirements, and the final result provides documentation that is helpful
for both business and technical users. The model also serves as useful input into the subsequent steps in
the IEPD creation process.

Choosing a modeling paradigm

A good option is UML—in particular, UML class diagrams—because UML concepts map easily onto NIEM
model concepts. Of course, you can create other UML diagrams, such as use case diagrams and sequence
diagrams, to document your exchange. This article focuses on the class diagram, because that is most
crucial to the IEPD development process.

If you use UML, there is an advantage to using an XMI-enabled UML tool, such as IBM Rational Modeler or
ArgoUML. This is because you can use the XMI to automatically generate a mapping spreadsheet, which
you can use in the next step. For this article, I used ArgoUML, an open source UML editor.

It is best to create a first draft of your model independently without trying to fit it into the NIEM model. You
want to get the model right for your business needs without being unduly influenced by the NIEM way of

http://www.datypic.com/
http://www.datypic.com/
http://argouml.tigris.org/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 6 http://www.datypic.com

doing things. Later in the IEPD process, it not uncommon to make small alterations to the model to better
harmonize it with NIEM (in cases where it makes sense). However, there will always be differences between
your model and the NIEM model.

Types and properties

This article isn't long enough to provide a complete introduction to UML modeling, so it focuses on the
NIEM-specific pointers. As you might expect, NIEM types are represented by classes in a class diagram.
Properties are represented by attributes of the class.

In my example case study, I determine that I have several classes that need to be exchanged—for example
Theft, MotorVehicle, Bicycle, Victim, Witness, and TheftLocation. These types are depicted in Figure 1,
along with their properties.

Figure 1. Initial UML model with types and properties

When specifying the data types of the properties, it is useful to use XML Schema primitive data types,
because the properties will eventually be represented in an XML schema and it will be easier to determine
whether the existing NIEM model fits yours if you use a common set of data types. The most commonly
used XML Schema data types are listed in Table 1.

Table 1. Common XML Schema data types

Data type name Description Example(s)

string Any text string abc, this is a string

integer An integer of any size 1, 2

decimal A decimal number 1.2, 5.0

date A date, in YYYY-MM-DD format 2009-12-25

time A time, in HH:MM:SS format 12:05:04

boolean A true/false value true, false

Some properties have an enumerated list of valid values, also known as a code list. Code list values can be
described in the UML model in comments or documented elsewhere in the system documentation. In my

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 7 http://www.datypic.com

example, to keep the model clean, I simply list these properties as having a data type code. I will record the
valid values in the mapping spreadsheet created in the next step of the IEPD process.

Generalizations and roles

The NIEM model uses generalizations, and when appropriate, you should use them in your model, too.
In the case study, MotorVehicle and Bicycle are both specific kinds of property that might be stolen. So, I
decide to add a more generic Property class and derive MotorVehicle and Bicycle from that. This allows
me to define the common properties such as SerialNumber only once, and will also simplify associations by
allowing the Property class to be the associated with Theft class.

Victim and Witness appear to follow the same rule. After all, they are both just more specific kinds of people.
However, a person's state of being a witness or a victim is temporary, so it is better represented as a role.
In fact, in this case, the same person could be both a victim and a witness in a particular theft. In that case,
you would only want to represent one person with two different roles. I show that in my model by adding a
separate Person class and creating associations to the Victim and Witness classes. I label the associations
"Role Of Person" to indicate that they are related via a role rather than a normal association.

Figure 2 shows the model after I have added my generalizations and roles.

Figure 2. UML model with generalizations and roles added

Relationships

UML has three ways of representing relationships: aggregation, composition, and association.

Aggregation and composition relationships generally represent "has a" relationships, where one class is
subordinate to another. In the example case study, a Person "has a" PersonName. The PersonName class is not
useful without a person to relate it to. Aggregations and compositions are treated the same way in NIEM. In

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 8 http://www.datypic.com

the eventual XML structure, the subordinate class will be contained in the other class. For example, there
will be a Person element that contains a PersonName element.

In contrast, associations are between two classes that can stand on their own. In the example case study,
a Theft and a TheftLocation are two separate things; one can exist without the other. To represent these
in your model, you can use generic UML associations, or, if there are additional properties relating to the
association itself, add separate association classes to the model. Either way, in the NIEM XML structure,
the classes will each be represented as distinct elements with a separate association element that contains
references to the elements that it is relating—in this case, Theft and a TheftLocation.

In the example case study, I use composition to represent the Person/PersonName relationship, and simple
UML associations to relate the rest of the classes to each other. Figure 3 shows the model after I have
added relationships.

Figure 3. UML model with relationships added

Choosing a root

Every XML message must have a single root. Generally, in an XML exchange, there is a single focal point
or purpose for the message. In my case, it is the theft report itself. I add a class for TheftReport to my model,
along with a property TheftReportDate. I create an aggregation relationship between TheftReport and Theft,
indicating that the Theft Report consists of a set of thefts.

The complete UML model is shown in Figure 4. This model is not yet perfect, nor does it have to be. It is
common to make iterative changes to the model throughout the IEPD development process. For example,
it might be useful to modify the structure or names to better fit the NIEM model, where appropriate.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 9 http://www.datypic.com

Figure 4. Completed UML model

Summary
This section described at a high level the steps involved in creating a NIEM IEPD and delved into detail
on the first step: creating the model. The result is a working draft of a UML model that you can use to
continue IEPD development. Using NIEM-targeted concepts like roles and XML Schema data types during
the modeling process makes the rest of the IEPD development process easier.

Step 2: Map and subset NIEM

Mapping your model to NIEM
Now that you've created a UML model of your exchange, the next step is to map your model to NIEM to
determine what parts of NIEM you will reuse in your messages. This mapping is most commonly done in a
spreadsheet, known as a Component Mapping Template (CMT). The CMT is useful for several reasons:

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 10 http://www.datypic.com

• It provides a detailed, human-readable definition of your exchange model with places for comments
and extra documentation.

• It makes explicit which parts of the model reuse NIEM components and which are custom to the IEPD.

• It serves as a convenient checklist when you make a subset of the NIEM model.

Creating a component mapping template (CMT)

You typically create CMTs in Microsoft® Office Excel® or other spreadsheet software, such as
OpenOffice.org Calc. However, you can create them in any tabular format. There is no one required format
for a CMT, but a typical CMT has, at a minimum, the following columns:

• Source type: The name of the class in the UML model

• Source property: The name of the property in the UML model

• Data type: The data type of the property

• Description: A short description of the type or property

• Cardinality: How many of the properties are allowed to appear

• Extension indicator: Whether the model matches a component in the NIEM model

• XPath: The path to the element in an XML message

Some NIEM implementers add more columns to the CMT to represent the details of extending NIEM. The
next section of this article will look further into extending NIEM.

Recording your model in the CMT

Your first step is to record your UML model in the first five columns of the CMT. Based on our UML class
diagram, Table 2 shows the TheftLocation class in CMT format. Descriptions are omitted from the table to
save space, but a completed example CMT is available from the Artifacts page.

Table 2. Representing a type and properties in the CMT

Source type Source property Data type Description Cardinality

TheftLocation ...

TheftLocation Address string ... 0..1

TheftLocation City string ... 0..1

TheftLocation State string ... 0..1

TheftLocation ZipCode string ... 0..1

TheftLocation CountyCode CountyCode ... 0..1

In the Data type column, XML Schema simple type names are used. In the case of code lists, a code list
name is specified, and the valid values are documented in another tab of the spreadsheet. Cardinality shows
the minimum and maximum number of occurrences, where * represents an unbounded number.

Each association should have a row in the CMT, along with rows for references to the types involved in the
association. Table 3 shows a CMT representation of the Theft/TheftLocation association.

http://www.datypic.com/
http://www.datypic.com/
http://www.datypic.com/services/niem/theftreport/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 11 http://www.datypic.com

Table 3. Representing an association in the CMT

Source type Source property Data type Description Cardinality

Theft/TheftLocation Assn

Theft/TheftLocation Assn Theft reference ... 1..1

Theft/TheftLocation Assn TheftLocation reference ... 1..1

Role types should be shown with references from the role to the type that is playing the role. The Witness
role type shown in Table 4 contains a reference to Person, labelled RoleOfPerson.

Table 4. Representing a role in the CMT

Source type Source property Data type Description Cardinality

Witness

Witness Account string ... 0..1

Witness RoleOfPerson reference ... 1..1

Searching for NIEM equivalents

The next task in mapping your exchange is to determine where your model overlaps with NIEM and record
those elements in the CMT. You want to reuse NIEM as much as possible to maximize interoperability with
other NIEM applications. An IEPD is not NIEM-conformant if it adds new components when semantically
equivalent components already exist in the NIEM model. That said, you should not force data into NIEM if
it really doesn't fit. This article will explain later how to add new components to the model.

Because the NIEM model is very large, you do not want to scan the schemas by hand looking for matching
components. Fortunately, several online tools are available to find components in the NIEM model:

• NIEM Wayfarer allows you to search for NIEM components and traverse through the model with one
page per component.

• Schema Central has similar capabilities to NIEM Wayfarer but works with a variety of XML
vocabularies, not just NIEM.

• The NIEM Schema Subset Generation Tool (SSGT) lets you search and navigate the NIEM model
in a slightly more graphical fashion. It has the added capability of generating a NIEM subset once
you find the components of interest.

Use one of these tools to look for all the components in your CMT that might already exist in NIEM. As
an example, when you search for the term "Vehicle" in Schema Central, you see the search results page
in Figure 5.

http://www.datypic.com/
http://www.datypic.com/
http://niemwayfarer.org/
http://www.schemacentral.com
http://niem.gtri.gatech.edu/niemtools/ssgt/index.iepd

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 12 http://www.datypic.com

Figure 5. Schema Central search results page

When you click on nc:Vehicle, the page shown in Figure 6 is displayed. It shows some general
characteristics of the element, followed by a complete listing of its possible children.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 13 http://www.datypic.com

Figure 6. Schema Central element display page

All of the NIEM components have a namespace prefix. nc refers to NIEM Core, the namespace where the
most fundamental types reside. There is also a namespace for each of the domains (e.g. "j" for Justice.)
Feel free to use NIEM components from any domain as long as they are semantically equivalent to your
model. You don't have to be implementing an immigration-related exchange to use an element from the
immigration domain.

Guidelines for searching the NIEM model

Regardless of which tool you use, you can make searching the model easier by following these tips:

• It is often easier to start by looking for the highest-level types/classes (in the example case, Theft,
Property, Location, and so on) first, and then finding the appropriate properties.

• Don't forget to search for synonyms. If you don't find "License Plate", look for "Registration".

• If you can't find your specific component, look for a more general one. Some of the most general
types in NIEM are Person, Organization, Location, Activity, and Item. For example, if you don't find
Theft Location, you can look for Location more generally and use nc:Location. If there is not a specific
type for "Theft", consider using the more generic nc:Activity.

• Don't just search names. If you expand your scope to search descriptions and enumerations, it might
lead you to the appropriate type.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 14 http://www.datypic.com

Finding components in the NIEM model might seem daunting at first, but it gets easier as you become more
familiar with the general naming and structural patterns of the NIEM model.

Recording NIEM components in the CMT

When you find an equivalent NIEM component, record it in the CMT in the XPath column. Generally, simple
XPath expressions are used—element and/or attribute names are separated by slashes (/). Type names
do not need to be included in the XPath. Use namespace prefixes such as nc:, because element names
are not necessarily unique across namespaces.

Table 5 shows the XPath mappings for TheftLocation.

Table 5. TheftLocation XPath mappings

Source type Source property ... Ext? XPath

TheftLocation ... nc:Location

TheftLocation Address ... N nc:Location/nc:LocationAddress/
nc:StructuredAddress/nc:LocationStreet/
nc:StreetFullText

TheftLocation City ... N nc:Location/nc:LocationAddress/
nc:StructuredAddress/nc:LocationCity
Name

TheftLocation State ... N nc:Location/nc:LocationAddress/
nc:StructuredAddress/nc:LocationState
USPostalServiceCode

TheftLocation Zip ... N nc:Location/nc:LocationAddress/
nc:StructuredAddress/nc:LocationPostal
Code

TheftLocation CountyCode ... Y

You should include enough steps in the XPath to uniquely identify it. For example, don't just put
nc:StreetFullText in the row for Address. Sometimes, multiple paths can lead to an element in NIEM, and
the entire path is needed for precision.

In the example, the CountyCode property, which is a state-specific county code, is not found in NIEM, so it
will require an extension. Therefore, the Ext? column is set to Y, and the XPath is left blank for now. The
next section of this article will walk through the process of filling in the XPaths for extensions.

A complete mapping of the Theft Report example model to NIEM is available from the Artifacts page.

Creating a NIEM subset
When you have decided which components of NIEM you want to use in your exchange, you create a subset
of the NIEM model that takes the form of a set of XML Schema documents. Because the full NIEM model
is so large and loosely constrained, a NIEM subset is necessary to validate your exchange more precisely.
The NIEM subset restricts the elements and attributes allowed, the number of times they can occur, and—
in some cases—their allowed values. Creating a NIEM subset also speeds up validation of XML messages,
because the schemas are much smaller.

http://www.datypic.com/
http://www.datypic.com/
http://www.datypic.com/services/niem/theftreport/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 15 http://www.datypic.com

You create NIEM subsets using the NIEM SSGT. The initial page of the SSGT in Figure 7 has two panes.
The right pane is where you search and navigate the model, and the left pane shows your subset as you
add components to it.

Figure 7. SSGT main page

Based on your CMT, you perform searches to find components to add to your subset. Using the SSGT,
you can choose to search either properties (element or attribute names), types, associations, or other
components. Because you have the names of the element in your CMT, it makes sense to search properties.
Sample search results are in Figure 8.

You might wonder why mapping and subsetting are two separate steps when you can perform the tasks in
the same tool (the SSGT). It is certainly possible to perform the mapping and subsetting at the same time
using the SSGT. However, many NIEM practitioners find it easier to do the mapping with NIEM Wayfarer or
Schema Central, which shows the actual (flattened) structure of the types more clearly. The SSGT requires
more knowledge of NIEM (and more clicking) to navigate, so going to the SSGT prepared with a CMT that
lists exactly what you want from NIEM makes subsetting more efficient.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 16 http://www.datypic.com

Figure 8. SSGT search results page

Adding properties to the subset

When the NIEM component of interest is displayed, click Add to add it to your subset. It then appears in
the left pane under NIEM Schema Subset as shown in Figure 9.

When you add a property, its type automatically goes with it. For example, if you add nc:PersonName,
nc:PersonNameType is automatically added to the subset, as well. The components you explicitly selected
appear in the left pane in bold, with a check box next to them, while the dependent components are not
in bold.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 17 http://www.datypic.com

Figure 9. SSGT subset

The SSGT does not add the child properties of a type by default. For example, if you add nc:PersonName,
it does not include the properties nc:PersonGivenName and nc:PersonSurName. These you must add to the
subset separately. When you add them, you must do so in the context of nc:PersonName, so that the parent-
child relationship between, for example, nc:PersonName and nc:PersonGivenName is maintained. To do this,
expand the nc:PersonName tree in the SSGT search results and click Add next to nc:PersonGivenName, as
in Figure 10.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 18 http://www.datypic.com

Figure 10. Adding a child using the SSGT

If instead you separately searched for PersonGivenName and added it from the search results, the element
would be added but not as a child of nc:PersonName.

Figure 10 also shows that when you add a property of a type, you can specify the cardinality. Clicking the
right down arrow on the Add button brings up a drop-down menu that shows possible cardinalities. The
default is 0 to infinity.

If a property is included by inheritance, it is not displayed in the SSGT hierarchy by default. For example,
expanding nc:Vehicle in the SSGT search results does not automatically show the nc:ItemDescriptionText
that is mapped to the Property Description property. To see these inherited properties, click show
inheritance (next to nc:VehicleType) and expand the type that contains the property of interest—in this
case, nc:ItemType, as in Figure 11.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 19 http://www.datypic.com

Figure 11. Adding an inherited property using the SSGT

Abstract elements and the subset

The NIEM model commonly uses XML Schema abstract elements and substitution groups. For example,
there are several ways to represent the color of an item. NIEM has an abstract element—nc:ItemColor—that
cannot appear anywhere in an XML instance. Instead, it must be substituted by one of several elements,
such as nc:VehicleColorPrimaryCode or nc:ItemColorDescriptionText. In XML Schema terminology,
nc:VehicleColorPrimaryCode and nc:ItemColorDescriptionText are said to be members of a substitution
group whose head is nc:ItemColor.

The abstract elements add some complexity to the creation of a subset, because you are required to add the
substitutable elements in your subset, not just the abstract element. The SSGT marks all abstract elements
with the word "abstract" and allows you to expand them to see the substitutable elements, as in Figure 12.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 20 http://www.datypic.com

Figure 12. Adding a substitutable element using the SSGT

Most date-related types also contain an abstract element nc:DateRepresentation that is substitutable by
nc:Date, nc:DateTime, and so on. It is an easy mistake to simply add a date-related property, such as
nc:ActivityDate, without expanding it to click on nc:DateRepresentation and then nc:Date to allow for the
appropriate child elements.

Fine-tuning your subset

When you have created your subset, you can modify it using the left pane of the SSGT. You can choose to
delete any component by selecting the check box next to it, and then clicking Delete. You can also delete
allowed code list values by expanding the appropriate simple types in the left pane. By default, all code list
values from a simple type are included in the subset.

You can also choose to change the cardinalities by clicking Edit Cardinality at the top of the left pane. Doing
so gives you another opportunity to decide how many of a particular property are allowed in a parent type.

Your NIEM subset does not have to be perfect at this point. NIEM subsetting is often an iterative process.
You can save and modify your subset as needed during the final stages of IEPD development.

Generating your NIEM subset

To generate your subset, click Generate Documents in the upper right corner of the page. Doing so brings
up a window similar to Figure 13 that shows some generation options. Select Save Subset Schema to a
file, and choose the location in which to save it.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 21 http://www.datypic.com

Figure 13. Generating a subset using the SSGT

Doing so creates a .zip file called Subset.zip with a niem subfolder that contains the NIEM subset. It has a
schema document for every namespace from which you chose elements in the SSGT plus a few standard
schemas that come with all subsets.

Only the types you chose are included in the schema documents, and those types only contain the chosen
properties. For example, although the nc:PersonNameType has seven possible children in the entire NIEM
model and they all have cardinalities 0..*, your subset schema will contain only what is in Example 4.

Example 4. nc:PersonNameType in NIEM subset

<xsd:complexType name="PersonNameType">
 <xsd:complexContent>
 <xsd:extension base="s:ComplexObjectType">
 <xsd:sequence>
 <xsd:element ref="nc:PersonGivenName" minOccurs="0" maxOccurs="1"/>
 <xsd:element ref="nc:PersonSurName" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 22 http://www.datypic.com

The subset also contains an XML document called wantlist.xml which lists all of the components you added
to your subset along with their cardinalities. The wantlist is useful if you need to make changes later: You can
re-upload the wantlist to the SSGT, modify the subset, and regenerate. Example 5 shows part of the wantlist.

Example 5. Partial NIEM subset wantlist

<w:WantList w:release="2.1" w:product="NIEM">
 <w:Element w:name="j:Person" w:isReference="false"/>
 <w:Element w:name="j:Witness" w:isReference="false"/>
 ...
 <w:Type w:name="j:PersonType" w:isRequested="false">
 <w:ElementInType w:minOccurs="0" w:maxOccurs="1"
 w:name="j:PersonAugmentation" w:isReference="false"/>
 </w:Type>
 <w:Type w:name="j:WitnessType" w:isRequested="false">
 <w:ElementInType w:minOccurs="0" w:maxOccurs="1"
 w:name="j:WitnessAccountDescriptionText" w:isReference="false"/>
 <w:ElementInType w:minOccurs="1" w:maxOccurs="1"
 w:name="nc:RoleOfPerson" w:isReference="true"/>
 </w:Type>
 ...
</w:WantList>

Summary

This section showed how to map a UML exchange model to NIEM using a Component Mapping Template
(CMT). It then described the process of creating a NIEM subset using the NIEM Schema Subset Generation
Tool (SSGT). The next section will cover the rows of the CMT that were not filled in yet: the extensions.
It will explain the different approaches to extending NIEM and take you through the process of creating
Exchange and Extension schemas.

Step 3: Extend NIEM
NIEM is large—over 6000 elements—but it most likely does not contain everything you want to include in an
XML exchange. It is not intended to cover every possible scenario but rather the most common information
building blocks. In most IEPDs you create, you will need to write an extension schema that adds types and
properties that are unique to your exchange. NIEM provides detailed guidelines for how to extend the model
in a way that maximizes interoperability among NIEM IEPDs.

The NIEM model also does not define specific message types or structures for assembling all of the objects
in an exchange. It is up to the creator of the IEPD to write an exchange schema to declare the root element
and the basic structure of the messages.

Earlier in this article I created a UML model of my exchange and mapped as much of it as I could to NIEM.
Figure 14 shows a revised UML model, where the areas in red indicate properties and types that I was
unable to map to the base NIEM model.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 23 http://www.datypic.com

Figure 14. IEPD model showing extensions

In this case, NIEM met most of my needs. But I will need to create two new schemas:

• An extension schema to define the Bicycle type, and the IsRegistered, VehicleCategory and
CountyCode properties

• An exchange schema to define the TheftReport type (because that is the root) and provide a structure
that allows all of the other types to be included in the message

Writing NIEM schemas

NIEM extension and exchange schemas (as well as the generated subset schemas) are written in XML
Schema. This article shows examples of NIEM-conformant schemas but does not provide a complete
explanation of the XML Schema language. If you are a newcomer to schemas, I recommend the XML
Schema Primer.

In addition to the constraints imposed by XML Schema, NIEM adds its own rules that are documented in
the NIEM Naming and Design Rules (NDR) 1.3 document. These rules cover, among other things, naming
and documentation standards for NIEM components, the kinds of XML Schema constructs that are allowed
and disallowed, and approved ways to use and extend NIEM. To be NIEM conformant, the schemas in an
IEPD must follow the NDR rules.

http://www.datypic.com/
http://www.datypic.com/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 24 http://www.datypic.com

Each schema document must have its own target namespace. For my example IEPD, I choose to use
http://datypic.com/theftreport/extension/1.0 (with the prefix trext:) as the namespace for the extension
schema, and http://datypic.com/theftreport/exchange/1.0 (with the prefix tr:) for the exchange schema.

It is common practice to use a folder structure that reflects the namespace names. Inside the Theft Report
IEPD, I will create folders called extension and exchange, and within each one a subfolder named 1.0 in
which I place the respective schema documents.

The beginning of a typical NIEM schema document—in this case, the extension schema for the Theft Report
example—is in Example 6.

Example 6. Beginning of a NIEM-conformant schema

<xsd:schema version="1.0"
 targetNamespace="http://datypic.com/theftreport/extension/1.0"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:trext="http://datypic.com/theftreport/extension/1.0"
 xmlns:s="http://niem.gov/niem/structures/2.0"
 xmlns:nc="http://niem.gov/niem/niem-core/2.0"
 xmlns:niem-xsd="http://niem.gov/niem/proxy/xsd/2.0"
 xmlns:i="http://niem.gov/niem/appinfo/2.0">
 <xsd:annotation>
 <xsd:documentation>Theft Report extension schema</xsd:documentation>
 <xsd:appinfo>
 <i:ConformantIndicator>true</i:ConformantIndicator>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:import schemaLocation="../../niem/niem-core/2.0/niem-core.xsd"
 namespace="http://niem.gov/niem/niem-core/2.0"/>
 <xsd:import schemaLocation="../../niem/proxy/xsd/2.0/xsd.xsd"
 namespace="http://niem.gov/niem/proxy/xsd/2.0"/>
 <xsd:import schemaLocation="../../niem/structures/2.0/structures.xsd"
 namespace="http://niem.gov/niem/structures/2.0"/>
 <xsd:import schemaLocation="../../niem/appinfo/2.0/appinfo.xsd"
 namespace="http://niem.gov/niem/appinfo/2.0"/>

</xsd:schema>

A NIEM schema document must contain an xsd:annotation element that has a description (in
xsd:documentation) and an indicator that it is NIEM conformant (in xsd:appinfo).

As with any schema, it declares and imports all of the namespaces that it needs to reference directly. It
is also required to import the appinfo schema on the last line of Example 6, which declares the elements
used inside the xsd:appinfo element.

Complete extension and exchange schema documents that include all of the listings in this article are
available from the Artifacts page.

Extension schemas

Depending on the complexity of your IEPD, you might have one extension schema or many. Some IEPD
developers choose to break extension schemas into multiple documents by subject area to allow them to
reuse the schemas more granularly in various exchanges. Others choose to put components that might be
versioned more frequently—for example, code lists—into a separate schema document.

http://www.datypic.com/
http://www.datypic.com/
http://www.datypic.com/services/niem/theftreport/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 25 http://www.datypic.com

For the Theft Report example, because it is simple, I choose to create one extension schema. After
the beginning of the schema in Example 6, I need to define types and declare elements for my custom
components. There are several ways of extending NIEM, and I use a different method for each of my
customizations.

Using substitution groups

Perhaps the easiest way to extend NIEM is through the use of substitution groups which allow you to declare
your own element and specify that it is substitutable for a NIEM element. This means that it can appear
anywhere the NIEM element is allowed. You can use this method when there is a semantically equivalent
element in the NIEM model, but it does not quite meet your needs. For example, in my model, I have a
CountyCode property that is semantically equivalent to the NIEM abstract element nc:LocationCounty that
appears inside an address. There are already two elements in the substitution group that are part of the
NIEM core model, but they don't meet my needs: nc:LocationCountyCode uses a different code list, and
nc:LocationCountyName is intended for a spelled-out name rather than a code. Instead, I declare a new
element, trext:LocationCountyCode, that uses my own code list.

Example 7 shows the element declaration for trext:LocationCountyCode. To indicate that it is substitutable
for nc:LocationCounty, I use a substitutionGroup attribute.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 26 http://www.datypic.com

Example 7. Declaration of the trext:LocationCounty element and related types
<xsd:element name="LocationCountyCode" type="trext:CountyCodeType"
 substitutionGroup="nc:LocationCounty">
 <xsd:annotation>
 <xsd:documentation>A county code.</xsd:documentation>
 </xsd:annotation>
</xsd:element>

<xsd:simpleType name="CountyCodeSimpleType">
 <xsd:annotation>
 <xsd:documentation>A data type for a county code.</xsd:documentation>
 <xsd:appinfo>
 <i:Base i:namespace="http://niem.gov/niem/structures/2.0" i:name="Object"/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="A">
 <xsd:annotation>
 <xsd:documentation>Ascot County</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="B">
 <xsd:annotation>
 <xsd:documentation>Burke County</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="C">
 <xsd:annotation>
 <xsd:documentation>Cross County</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="CountyCodeType">
 <xsd:annotation>
 <xsd:documentation>A data type for a county code.</xsd:documentation>
 <xsd:appinfo>
 <i:Base i:namespace="http://niem.gov/niem/structures/2.0" i:name="Object"/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="trext:CountyCodeSimpleType">
 <xsd:attributeGroup ref="s:SimpleObjectAttributeGroup"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

Example 7 also shows the two type definitions that support the trext:LocationCountyCode element. First, a
simple type is defined that has xsd:enumeration elements for each of the code values. Then, a complex type
is defined based on the simple type. The complex type adds universal attributes like s:id that are allowed
on all NIEM objects, through a reference to s:SimpleObjectAttributeGroup.

Creating entirely new types

Another method of NIEM extension is to create a whole new type. In my model, Bicycle doesn't have an
equivalent at all in the NIEM model, so I need to create a new element and a new corresponding complex
type. Whenever you add a new type, you should consider whether it is a specialization of an existing NIEM
type—for example, nc:ActivityType, nc:PersonType, or nc:ItemType. For Bicycle, I decide that it should be
based on nc:ConveyanceType, because it represents a means of transportation, which is appropriate for a
bicycle. Also, nc:ConveyanceType already has most of the properties I need, such as serial number and
description.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 27 http://www.datypic.com

As with the previous method of extension, I have to define both a new element, trext:Bicycle, and a type,
trext:BicycleType. Example 8 shows these definitions.

Example 8. Declaration of the trext:Bicycle element and related type

<xsd:element name="Bicycle" type="trext:BicycleType">
 <xsd:annotation>
 <xsd:documentation>A bicycle.</xsd:documentation>
 </xsd:annotation>
</xsd:element>

<xsd:complexType name="BicycleType">
 <xsd:annotation>
 <xsd:documentation>A data type for a bicycle.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="nc:ConveyanceType">
 <xsd:sequence>
 <xsd:element ref="trext:BicycleRegisteredIndicator" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

The type definition for trext:BicycleType indicates that it extends nc:ConveyanceType. Note that if you are
creating a type that is truly new—that is, not based on any concept already in NIEM—you must base your
type on s:ComplexObjectType, which is the root of all complex types in NIEM.

In trext:BicycleType, I reference a trext:BicycleRegisteredIndicator element that I have to declare
separately. All elements, attributes and types in NIEM schemas are global, uniquely named, top-level
components. Example 9 shows the declaration of the trext:BicycleRegisteredIndicator element.

Example 9. Declaration of the trext:BicycleRegisteredIndicator element

<xsd:element name="BicycleRegisteredIndicator" type="niem-xsd:boolean">
 <xsd:annotation>
 <xsd:documentation>Whether a bicycle is registered.</xsd:documentation>
 </xsd:annotation>
</xsd:element>

Unlike trext:LocationCountyCode, which had its own code list type, trext:BicycleRegisteredIndicator has
a type that corresponds to one of the XML Schema built-in types, boolean. However, instead of giving it the
built-in type xsd:boolean, I use niem-xsd:boolean. This complex type, defined in the "proxy" schema xsd.xsd,
specifies that the element contains an xsd:boolean value but also allows the universal NIEM attributes like
s:id.

Adding properties to existing types

Another extension situation is where you have a complex type that is semantically equivalent to a NIEM
type but you need to alter or add to it in some way. In my model, the MotorVehicle class is equivalent to
the NIEM nc:VehicleType but it needs an extra property, VehicleCategoryCode. When doing the mapping, I
looked at nc:ItemCategoryText as a possible mapping candidate but decided that it was too general. In fact,
the VehicleCategoryCode property represents a classification of vehicles used for tax purposes, so I decide
to call the element trext:VehicleTaxClassCode.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 28 http://www.datypic.com

The required XML Schema definitions are similar to the Bicycle extension. Example 10 shows how
I declare a new element—trext:Vehicle—and a new complex type—trext:VehicleType—that extends
nc:VehicleType.

Example 10. Declaration of the trext:Vehicle element and related type

<xsd:element name="Vehicle" type="trext:VehicleType">
 <xsd:annotation>
 <xsd:documentation>A motor vehicle.</xsd:documentation>
 </xsd:annotation>
</xsd:element>

<xsd:complexType name="VehicleType">
 <xsd:annotation>
 <xsd:documentation>A data type for a motor vehicle.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="nc:VehicleType">
 <xsd:sequence>
 <xsd:element ref="trext:VehicleTaxClassCode" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Adding new objects with existing types

Sometimes, you are happy with the NIEM types, but you want to use names that are more specific or relevant
to your exchange. In my model, I decided that the Theft class corresponded to the NIEM nc:ActivityType.
However, I'm not completely satisfied with calling my element nc:Activity, because it is too general and
not descriptive enough. In this case, I choose to declare a new element, named trext:Theft, but give it the
existing type nc:ActivityType rather than define a new type. Example 11 shows the element declaration.

Example 11. Declaration of the trext:Theft element

<xsd:element name="Theft" type="nc:ActivityType">
 <xsd:annotation>
 <xsd:documentation>A theft incident.</xsd:documentation>
 </xsd:annotation>
</xsd:element>

Exchange schemas
Exchange schemas contain definitions that are unique to a message type or group of message types.
This generally includes only the root element and its type and possibly some structural elements that form
the basic framework of the message. Typically, an exchange schema is IEPD specific, while an extension
schema might be shared across several IEPDs.

You are not required to have separate exchange and extension schemas; you can put all of your extensions
in the same schema document. You can also have multiple exchange schemas in order to represent different
message types or groups of different message types.

Exchange schemas follow all of the same rules described previously for extension schemas. For example,
they must have their own target namespace and must have annotations.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 29 http://www.datypic.com

In the Theft Report example, the exchange schema will contain the tr:TheftReport element, because that
is the root, and its type. It will contain a TheftReportDate, which is shown in the model. But more importantly,
the tr:TheftReport element will be what brings together all of the objects and associations defined in the
exchange. The element and type for TheftReport are in Example 12.

Example 12. Declaration of the tr:TheftReport element and related type

<xsd:element name="TheftReport" type="tr:TheftReportType">
 <xsd:annotation>
 <xsd:documentation>A theft report.</xsd:documentation>
 </xsd:annotation>
</xsd:element>

<xsd:complexType name="TheftReportType">
 <xsd:annotation>
 <xsd:documentation>A data type for a theft report.</xsd:documentation>
 <xsd:appinfo>
 <i:Base i:namespace="http://niem.gov/niem/structures/2.0" i:name="Object"/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="s:ComplexObjectType">
 <xsd:sequence>
 <xsd:element ref="tr:TheftReportDate" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="trext:Theft" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="nc:ActivityConveyanceAssociation" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="trext:Vehicle" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="trext:Bicycle" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="j:ActivityLocationAssociation" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="nc:Location" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="j:ActivityVictimAssociation" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="j:Victim" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="j:ActivityWitnessAssociation" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="j:Witness" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="nc:Person" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Note that the object and association elements are all siblings of each other. This is typical of a NIEM
message, where associations between objects are separate components that reference the related objects
through s:ref attributes.

A snippet of a message that shows the association between a theft and its location is in Example 13.
The objects, trext:Theft and nc:Location, are siblings, and each has an s:id attribute giving it a unique
identifier. The association, j:ActivityLocationAssociation, is another sibling that links the two objects using
child elements with s:ref attributes.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 30 http://www.datypic.com

Example 13. Sample instance showing association

<trext:Theft s:id="T1">
 <nc:ActivityDate>
 <nc:DateTime>2006-05-04T08:15:00</nc:DateTime>
 </nc:ActivityDate>
</trext:Theft>

<j:ActivityLocationAssociation>
 <nc:ActivityReference s:ref="T1"/>
 <nc:LocationReference s:ref="L1"/>
</j:ActivityLocationAssociation>

<nc:Location s:id="L1">
 <nc:LocationAddress>
 <nc:StructuredAddress>
 <nc:LocationStreet>
 <nc:StreetFullText>123 Main Street</nc:StreetFullText>
 </nc:LocationStreet>
 <nc:LocationCityName>Big City</nc:LocationCityName>
 <trext:LocationCountyCode>A</trext:LocationCountyCode>
 <nc:LocationStateUSPostalServiceCode>MI</nc:LocationStateUSPostalServiceCode>
 <nc:LocationPostalCode>49684</nc:LocationPostalCode>
 </nc:StructuredAddress>
 </nc:LocationAddress>
</nc:Location>

Another option for expressing relationships among objects is containment, where one object is the parent
of another object. For example, it is hypothetically possible to create a brand new TheftType that contains
within it a person and a location or a reference to a person or a location. However, this is not the
recommended approach to using NIEM. Separating associations makes the delineation of objects clearer,
reduces problems with recursion, and is more adapted to many-to-many relationships.

Naming and documenting NIEM components

You might have noticed some consistency in the names used in the examples. NIEM imposes certain rules
for names:

• A name has an object term and a property term, and, if it is a simple element, a representation term.
For example, in the name BicycleRegisteredIndicator, Bicycle is the object term, Registered is the
property term, and Indicator is the representation term. It can also have optional qualifier terms.

• There is a specific set of approved representation terms, among which are Indicator, Code, Date,
Text, Value, and Quantity.

• All names use camel case (uppercasing the first letter of each word) rather than separator characters.

• Attribute names start with a lowercase letter, while element and type names start with an uppercase
letter.

• All types have the word Type at the end of their name.

There are also rules that govern the documentation of NIEM components. All schemas, elements, attributes,
types, and enumerations must have definitions, and they must start with one of an approved set of beginning
phrases, such as "A name of", or "A relationship".

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 31 http://www.datypic.com

This is just a sampling of the rules; you can find a complete listing of the NIEM rules in the NDR.

Modifying the subset

As you build your extension and exchange schemas, you might need additional components from NIEM
that you did not include in your subset. For example, trext:BicycleRegisteredIndicator is of type niem-
xsd:boolean, a type that was not in my original subset.

Fortunately, it is easy to modify your subset using the Schema Subset Generation Tool (SSGT). From the
main page of the SSGT, click Options in the upper right corner. This will bring up a page shown in Figure 15.

Figure 15. SSGT Options page

In the section called Load Wantlist, fill in (or browse for) your wantlist.xml file name, and then click Load
Want List. Doing so brings up your subset in the left pane. You can then click Search and use the right
pane to search and add components to your NIEM subset. When you are done, regenerate the subset.

When working with extensions, you sometimes want to use the SSGT to look for types rather than properties.
To find niem-xsd:boolean I can't use the default search on properties, because that only finds element and

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 32 http://www.datypic.com

attribute names, not type names. To specifically look for types, choose Type from the Search for a drop-
down menu on the search page of the SSGT.

Documenting your mapping in the CMT
Be sure to document your extensions in the Component Mapping Template (CMT) that was described earlier
in this article. At a minimum, you should fill in the XPath expressions for your extension elements. Table 6
shows the extensions I filled in for the MotorVehicle and Bicycle classes.

Table 6. XPath mapping for extensions

Source type Source property ... Ext? XPath

MotorVehicle ... Y trext:Vehicle

MotorVehicle LicensePlate ... Y trext:Vehicle/nc:ConveyanceRegistrationPlate
Identification/nc:IdentificationID

MotorVehicle VehicleCategory ... Y trext:Vehicle/trext:VehicleTaxClassCode

Bicycle ... Y trext:Bicycle

Bicycle IsRegistered ... Y trext:Bicycle/trext:BicycleRegisteredIndicator

Some NIEM practitioners create more formal CMTs that have separate columns indicating the kind of
extension, the base types and elements, and the level of semantic alignment. For my CMT, I chose to take
a looser approach to defining the dependencies by including this information in a Comments column. The
final Theft Report CMT is available from the Artifacts page.

Summary
In this section, I described the process of extending NIEM. I explained the role of extension and exchange
schemas, and showed the various methods of adding new elements and types based on NIEM components.
The majority of the work in creating a NIEM IEPD is now complete. The next section describes the last and
final step, assembling the final IEPD.

Step 4: Assemble the IEPD
An IEPD is a collection of documents describing a NIEM exchange. It typically includes schemas, samples,
documentation of various kinds, and rendering instructions. It also includes several NIEM-specific artifacts
that are required in a NIEM-conformant exchange, such as a metadata document and a catalog file.

In this article, I have been working through a simple example of a Theft Report IEPD. Now that my UML
model, CMT and schemas are complete, I have a few steps left to finish my IEPD:

1. Create more documentation-related artifacts to further explain the exchange.

http://www.datypic.com/
http://www.datypic.com/
http://www.datypic.com/services/niem/theftreport/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 33 http://www.datypic.com

2. Assemble my IEPD in a NIEM-conformant way, which involves using the NIEM "Work with IEPDs"
tool to upload my artifacts and generate additional documentation files.

3. Validate my IEPD for completeness and NIEM conformance using the NIEM Conformance Validation
Tool.

4. Publish my IEPD so that it can be discovered by other users.

IEPD documentation
To be NIEM conformant, an IEPD must contain—at a minimum—some form of master documentation and
a change log describing the changes since the last version. You can include any documentation that might
typically accompany a software application in the IEPD (either in the master documentation or as separate
files), such as:

• UML models (sequence diagrams, use cases, class diagrams)

• A CMT

• Business rules (that is, constraints on the data that are not expressed in the schemas or in the model)

• Requirements definitions

• Testing and/or conformance statements

• Memoranda of understanding and letters of endorsement

The documentation artifacts I have developed so far for the Theft Report IEPD are a UML model and a
CMT. I need to add master documentation that describes in general terms the purpose and structure of
the exchange. I also add a change log, which is essentially empty, because this is the first version of the
exchange. See the Artifacts page for a complete IEPD that contains these documents.

Creating sample documents
Sample XML documents are an important part of an IEPD. It's difficult to conceptualize XML documents
based solely on a schema, particularly if you're talking about a complex set of interrelated schema
documents. Using samples makes it clear which element is the root element in any given document type
and provides examples of typical data for each element.

Include at least one sample for each different root element in the exchange schema. If you use a document
type for multiple purposes, you should provide a sample for each purpose. It's helpful to create one sample
that contains every possible element in order to test the schemas and any software written to process the
documents. For a complex exchange, it may also be useful to create a typical sample that contains what
is likely to be included in any given document.

Many XML editors generate sample documents for you, but those documents generally contain meaningless
data and don't have correctly related ID and IDREF values used in the associations. You should edit any
generated samples to make them more typical and meaningful. I also recommend validating your samples
using multiple processors because of differences in the way various processors handle schema location
hints.

http://www.datypic.com/
http://www.datypic.com/
http://www.datypic.com/services/niem/theftreport/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 34 http://www.datypic.com

For the Theft Report IEPD, I only have one possible root element (tr:TheftReport). Example 14 shows the
beginning of one complete sample that I created. It has at least one of each element type allowed in the
exchange and has representative values for the data.

Example 14. Beginning of a sample document
<?xml-stylesheet type="text/xsl" href="theftreport.xsl" ?>
<tr:TheftReport xmlns:tr="http://datypic.com/theftreport/exchange/1.0"
 xmlns:nc="http://niem.gov/niem/niem-core/2.0"
 xmlns:trext="http://datypic.com/theftreport/extension/1.0"
 xmlns:j="http://niem.gov/niem/domains/jxdm/4.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:s="http://niem.gov/niem/structures/2.0"
 xsi:schemaLocation="http://datypic.com/theftreport/exchange/1.0
 ../schema/exchange/1.0/theftreport-exchange.xsd">
 <tr:TheftReportDate>2006-05-05</tr:TheftReportDate>
 <trext:Theft s:id="T1">
 <nc:ActivityDate>
 <nc:DateTime>2006-05-04T08:15:00</nc:DateTime>
 </nc:ActivityDate>
 </trext:Theft>
 <trext:Theft s:id="T2">
 <nc:ActivityDate>
 <nc:DateTime>2006-05-04T09:14:00</nc:DateTime>
 </nc:ActivityDate>
 </trext:Theft>
 <nc:ActivityConveyanceAssociation>
 <nc:ActivityReference s:ref="T1"/>
 <nc:ConveyanceReference s:ref="V1"/>
 </nc:ActivityConveyanceAssociation>
 <nc:ActivityConveyanceAssociation>
 <nc:ActivityReference s:ref="T2"/>
 <nc:ConveyanceReference s:ref="B1"/>
 </nc:ActivityConveyanceAssociation>
 <trext:Vehicle s:id="V1">
 <nc:ItemDescriptionText>2001 Subaru Outback</nc:ItemDescriptionText>
 <nc:ItemSerialIdentification>
 <nc:IdentificationID>123455234234</nc:IdentificationID>
 </nc:ItemSerialIdentification>
 <nc:VehicleColorPrimaryCode>SIL</nc:VehicleColorPrimaryCode>
 <nc:ConveyanceRegistrationPlateIdentification>
 <nc:IdentificationID>BGE112</nc:IdentificationID>
 </nc:ConveyanceRegistrationPlateIdentification>
 <trext:VehicleTaxClassCode>4</trext:VehicleTaxClassCode>
 </trext:Vehicle>

 <!-- ... -->
 </tr:TheftReport>

Creating rendering instructions
Rendering instructions are another useful tool to help users and implementers of the IEPD conceptualize
the exchange. It's difficult to look at a complex XML document and understand its content—particularly in a
typical NIEM document, which has a lot of structural elements and associations that connect different parts
of a document. Some users get caught up in the complexity of the structure and the names of elements
rather than focusing on the actual content.

If you write rendering instructions that turn the XML data into human-readable HTML, you can alleviate this
problem. Associated objects can be rejoined and displayed together on the page, extraneous structure can
be ignored, and cryptic code list values can be turned into their readable equivalents.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 35 http://www.datypic.com

Rendering of XML documents is typically done with an XSLT stylesheet. I generally recommend sticking
to XSLT version 1.0 for simple HTML rendering, because that version is supported in major browsers.
Providing an XSLT stylesheet in the same directory as the samples allows users to double-click a sample
(or open it in an XML editor) and see the rendered HTML version. The processing instruction (starting with
<?xml-stylesheet) on the first line of Example 14 indicates which XSLT stylesheet to use.

For the Theft Report IEPD, I created a fairly simple XSLT 1.0 stylesheet (included in the IEPD downloadable
from the Artifacts page) that presents the Theft Report in a user-friendly way, as in Figure 16. The XSLT
joins each theft with its associated location, vehicle, victim, and witness to present the data logically.

Figure 16. Rendered sample

Assembling an IEPD

NIEM provides a Work with IEPDs Tool for gathering your IEPD artifacts and assembling the complete
package. Although it is possible to assemble an IEPD by hand, using the tool is generally easier, because

http://www.datypic.com/
http://www.datypic.com/
http://www.datypic.com/services/niem/theftreport/
http://niem.gtri.gatech.edu/niemtools/iepdt/index.iepd

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 36 http://www.datypic.com

it allows you to automatically generate two NIEM-specific artifacts that are required for NIEM conformance:
the metadata document and the catalog file, which serves as a table of contents. It also results in an IEPD
that has a more consistent file structure.

To use the tool, choose Create/Upload IEPD from the menu on the left side of the page. Doing so takes
you to the page in Figure 17.

Figure 17. Create/Upload an IEPD page

After you click Begin, you will be asked whether you have an existing IEPD zip file that you want to upload.
If you already have a zipped set of IEPD artifacts, you can click yes and upload the zip file. When working
with the tool for the Theft Report example, I clicked no to upload each file individually.

When you click no, the tool displays the page in Figure 18. This page allows you to specify a root directory
name. For the Theft Report, I choose TheftReport as the root directory. Also on this page, to add individual
artifacts to the IEPD, click the Add Artifact link.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 37 http://www.datypic.com

Figure 18. Upload Artifacts page

You add the extension and exchange schemas, wantlist, subset, sample document, rendering instructions,
CMT, UML model, change log, and master documentation using this page. Note that you should zip the
subset schemas into one file; when the tool regenerates the IEPD, it will be unzipped.

For each artifact you add, you choose a type. Doing so is important, because it affects the way the catalog
file is generated and the default directories used for the components. You can also choose a directory path
on this page. For consistency, click use recommended path for each artifact, and the tool fills in the path.
The only change I made to the recommended path was to include a 1.0 subdirectory for the exchange and
extensions schemas, because I wanted the directory structure to mirror the namespace name. I also added
a description for each artifact. Figure 19 shows the results.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 38 http://www.datypic.com

Figure 19. Added artifacts

When you are done adding artifacts, click Next to go to the Enter Metadata page in Figure 20. Here, you
provide metadata about the IEPD, such as name, description, version, organization, and point of contact.
The tool uses this information to generate an XML document called metadata.xml that is included with the
IEPD.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 39 http://www.datypic.com

Figure 20. Enter Metadata page

One thing that is slightly confusing about this page is that the fields required for NIEM conformance are not
all marked with yellow asterisks. Later, when you validate your IEPD, you will be informed if you missed
any required metadata. In general, it's best to fill in as many as are relevant. When you're done with the
metadata, click Next to go to the summary page in Figure 21.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 40 http://www.datypic.com

Figure 21. IEPD summary page

From here, you can click Validate IEPD to determine whether your IEPD contains all the necessary
metadata. When it is validated, click Upload IEPD to save the IEPD in your profile so that you can retrieve it
under My IEPDs later. Note that uploading your IEPD does not automatically make it visible to other users
of the Web site.

Finally, to actually generate the IEPD, click Download from the IEPD Successfully Uploaded page. You
can download, modify, or delete any of your IEPDs at any time by clicking My IEPDs from the menu on
the left side of the tool pages.

Looking at the generated IEPD, you can see a copy of all of the artifacts that you uploaded plus two new
generated files. The metadata.xml document, in Example 15, provides a standardized cross-IEPD format
for information about the exchange.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 41 http://www.datypic.com

Example 15. The metadata document

<Metadata>
 <URI>http://www.datypic.com/theftreport</URI>
 <Name>Theft Report</Name>
 <Summary>Exchange to report thefts of motor vehicles and bicycles on a daily basis</Summary>
 <Description>Contains information about a theft of a motor vehicle or bicycle,
 including the theft date, location, description and identifiers of
 the stolen property, and victim and witness information.</Description>
 <Version>1.0</Version>
 <URL>http://www.datypic.com/theftreport</URL>
 <CreationDate>03/01/2010</CreationDate>
 <LastRevisionDate>03/01/2010</LastRevisionDate>
 <NextRevisionDate>06/01/2010</NextRevisionDate>
 <NIEMVersion>2.0</NIEMVersion>
 <Security>Public</Security>
 <Maturity>2</Maturity>
 <Status>Final</Status>
 <Schedule/>
 <Lineage/>
 <Relationships/>
 <Keywords/>
 <Domain>Justice, </Domain>
 <ExchangePartners/>
 <Process/>
 <TriggeringEvent/>
 <Conditions/>
 <Endorsements/>
 <Sponsors>Datypic</Sponsors>
 <Purpose>Report thefts of motor vehicles and bicycles to interested parties</Purpose>
 <MessageExchangePatterns>publish/subscribe</MessageExchangePatterns>
 <CommunicationsEnvironment/>
 <ExchangePartnerCategories>Law Enforcement, DMV,
 Department of Revenue</ExchangePartnerCategories>
 <AuthoritativeSource>
 <Category>none</Category>
 <Organization>
 <Name>Datypic</Name>
 <Address1/>
 <Address2/>
 <City/>
 <State/>
 <Zip/>
 <Country/>
 <URL>http://www.datypic.com</URL>
 </Organization>
 <PointOfContact>
 <Name>Priscilla Walmsley</Name>
 <Address1/>
 <Address2/>
 <City/>
 <State/>
 <Zip/>
 <Country/>
 <Phone>231-555-1212</Phone>
 <Fax/>
 <Email>pwalmsley@datypic.com</Email>
 </PointOfContact>
 </AuthoritativeSource>
</Metadata>

The catalog.html file is an XHTML document that serves as a table of contents of the artifacts in the IEPD.
It is shown in its rendered human-readable form in Figure 22. The catalog is also machine-readable, thanks
to rddl:purpose attributes embedded in the XHTML.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 42 http://www.datypic.com

Figure 22. Rendered IEPD catalog file

Validating the IEPD

Once you create an IEPD, you can test it for conformance using the NIEM Conformance Validation Tool.
This process ensures that all required artifacts are present in the IEPD. It also tests the schemas against
some of the rules for NIEM-conformant schemas defined in the NIEM Naming and Design Rules (NDR)
document.

From the Conformance Validation Tool main page, click Begin to bring up the page shown in Figure 23. It
prompts you to upload a file, which will be your entire IEPD as a zip file. The tool uses the catalog file to
determine the location and type of all artifacts. After you click through the page that asks you to verify the
purpose of your artifacts, a new section of this page, called My Validations, appears with a conformance
report for your IEPD.

http://www.datypic.com/
http://www.datypic.com/
http://niem.gtri.gatech.edu/contesaNIEM/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 43 http://www.datypic.com

Figure 23. Conformance tool

Figure 24 shows the summary page of the conformance report, which is in Microsoft® Office Excel® format.
It has several worksheets:

• Summary is the basic statistical information shown in Figure 24.

• NDR - All Rules provides a list of all the rules in the NDR and, for those that can be automatically
checked, whether the schemas in the IEPD passed. For each rule that cannot be checked
automatically, a drop-down list allows you to indicate that you checked it manually.

• NDR - Schemas is a summary of all of the schema documents and whether they are NIEM
conformant.

• NDR - Rules Auto Failed is a list of each instance of an NDR rule violation.

• IEPD - Metadata is a list of all of the metadata fields, signaling an error if they are required but absent.

• IEPD - Catalog is a list of all of the artifact types, signaling an error if they are required but absent.

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 44 http://www.datypic.com

Figure 24. Conformance report summary

A complete copy of the conformance report for the Theft Report IEPD is available from the Artifacts page.

http://www.datypic.com/
http://www.datypic.com/
http://www.datypic.com/services/niem/theftreport/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 45 http://www.datypic.com

Submitting an IEPD to public repositories

IEPDs are meant to be shared. Although NIEM helps interoperability by providing common definitions and
techniques, XML documents from two IEPDs that use different subsets of NIEM are not interchangeable.
Therefore, reuse of IEPDs is critical to achieving interoperability.

For others to use your IEPD, it has to be available publicly for others to discover. Two major Web sites
provide directories of existing IEPDs, and submitting your IEPD to these sites is easy.

First, you can list your IEPD on the NIEM Web site itself to make it available under the Search function of
the Work with IEPDs tool. To do this within the Work with IEPDs tool, bring up your IEPD summary page.
Click the Edit link in the top right, then click Edit Visibility/Sharing to bring up the Edit Artifact Visibility
page in Figure 25.

Figure 25. Editing IEPD visibility

http://www.datypic.com/
http://www.datypic.com/

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 46 http://www.datypic.com

From here, select Shared to make the IEPD visible. You can also hide individual artifacts (by clearing the
check box beside them) even if the IEPD itself is visible. This allows users to be aware of the IEPD even if
individual artifacts are classified. Click Update Visibility when you are done.

The second place to submit your IEPD is to the Office of Justice Programs (OJP) IEPD Clearinghouse. To
do this, visit the clearinghouse Web site, and click Submit IEPD Information to get a form on which you
can upload your IEPD.

LEXS: An alternatives to creating an entire IEPD

Now that you understand the process of developing a NIEM IEPD, consider again whether this is a task
you should undertake. At the beginning of this article, I suggested that you consider reusing an existing
IEPD before you create your own from scratch. Not only will you improve your interoperability with other
applications, but you will also save yourself a lot of work.

However, it is sometimes difficult to find an IEPD that meets all of your requirements. In these cases, a good
solution is Logical Entity Exchange Specification (LEXS). LEXS is a NIEM IEPD framework that balances
the competing goals of interoperability and flexibility by separating documents into a digest and a structured
payload. The digest, which contains the most commonly used NIEM components, has a fixed structure
and is interoperable across all LEXS-based IEPDs. The structured payload allows individual LEXS-based
IEPDs to extend and customize the LEXS base model. LEXS also provides solutions for handling message
exchange, search, subscriptions, attachments, and rendering.

Conclusion
Throughout this article, you have seen how to create a NIEM IEPD, including all steps in the process:
modeling an exchange, creating an appropriate NIEM subset for the model, writing your own extensions
of NIEM, and assembling all the artifacts into an IEPD. Following these guidelines for a NIEM-conformant
exchange will help you to capitalize on the promise of NIEM: to facilitate information sharing among public
and private sector organizations.

About the author

Priscilla Walmsley serves as Managing Director and Senior Developer at Datypic. She specializes in
XML technologies, architecture and implementation. She has implemented NIEM exchanges for the U.S.
Departments of Justice, Defense, and Health and Human Services.

She is the author of Definitive XML Schema (Prentice Hall, 2012), and XQuery (O'Reilly Media, 2015). In
addition, she co-authored Web Service Contract Design and Versioning for SOA (Prentice Hall, 2008).

http://www.datypic.com/
http://www.datypic.com/
http://it.ojp.gov/framesets/iepd-clearinghouse-noClose.htm
http://lexsdev.org/
http://www.datypic.com
http://www.datypic.com/books/defxmlschema/
http://www.datypic.com/books/xquery/
http://www.amazon.com/gp/product/013613517X?ie=UTF8&tag=az12293559-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=013613517X

Creating a NIEM 2.1 IEPD

© 2010-2014 Datypic, Inc. Page 47 http://www.datypic.com

About Datypic
Datypic provides development services and training, specializing in XML, content management and
electronic publishing. We are experts in XML-related technologies such as XML Schema, XSLT and XQuery,
and have extensive experience with software development and implementation.

We participate in projects ranging from one day to many months, anywhere in the world. We can arrange
to work remotely or at your site, whichever you prefer.

For more information, please read about our services at datypic.com.

About this article
A prior version of this article was first published by IBM developerWorks. Its current version number is 2.0
and it was last updated on April 30, 2014.

http://www.datypic.com/
http://www.datypic.com/
http://www.datypic.com
http://www.ibm.com/developerworks/

	Creating a NIEM 2.1 IEPD
	Table of Contents
	Introducing NIEM
	How do you use NIEM?
	Developing an IEPD

	Step 1: Model your NIEM exchange
	Understanding the NIEM model
	NIEM model concepts
	The NIEM model in XML

	Modeling your exchange
	Choosing a modeling paradigm
	Types and properties
	Generalizations and roles
	Relationships
	Choosing a root

	Summary

	Step 2: Map and subset NIEM
	Mapping your model to NIEM
	Creating a component mapping template (CMT)
	Recording your model in the CMT
	Searching for NIEM equivalents
	Guidelines for searching the NIEM model
	Recording NIEM components in the CMT

	Creating a NIEM subset
	Adding properties to the subset
	Abstract elements and the subset
	Fine-tuning your subset
	Generating your NIEM subset

	Summary

	Step 3: Extend NIEM
	Writing NIEM schemas
	Extension schemas
	Using substitution groups
	Creating entirely new types
	Adding properties to existing types
	Adding new objects with existing types

	Exchange schemas
	Naming and documenting NIEM components
	Modifying the subset
	Documenting your mapping in the CMT
	Summary

	Step 4: Assemble the IEPD
	IEPD documentation
	Creating sample documents
	Creating rendering instructions
	Assembling an IEPD
	Validating the IEPD
	Submitting an IEPD to public repositories
	LEXS: An alternatives to creating an entire IEPD

	Conclusion
	About the author
	About Datypic
	About this article

